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Abstract

Utility planners and operators are responsible for guiding where PV systems are located and are
accountable for system reliability. They are concerned about how short-term PV system output changes
may affect utility system stability. That is, they are concerned about PV power output variability.

This paper introduces a novel approach to estimate the maximum short-term output variability that a
fleet of PV systems places on any considered power grid. A key input to this approach is the correlation,
or absence thereof, existing between individual installations in the fleet at the considered variability
time scale.

Short-term PV power output variability is driven by changes in the clearness index. Thus, the paper
focuses on analyzing the correlation coefficient of the change in the clearness index between two
locations as a function of distance, time interval, and other parameters. The paper presents a method
to estimate correlation coefficients that uses location-specific input parameters. The method appears to
be capable of describing site-pair correlation across time intervals from seconds to hours.

The method is derived empirically and validated using 12 years of hourly satellite-derived data from
SolarAnywhere® in three geographic regions in the United States (Southwest, Southern Great Plains, and
Hawaii). Results at time intervals less than one hour are corroborated using findings from recent
investigations that were based on 10-second to one-minute data sets.

The strength and structure of the method is summarized by three fundamental findings that both
confirm and extend conclusions from previous studies:

1. Correlation coefficients decrease predictably with increasing distance.

2. Correlation coefficients decrease at a similar rate when evaluated versus distance divided by the
considered variability time interval.

3. The accuracy of results is improved by including an implied cloud speed term.

The present approach has potential financial benefits to systems that are concerned about PV power
output variability, ranging from distribution feeders to balancing regions.
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Introduction

PV capacity is increasing on utility systems. As a result, utility planners and operators are growing more
concerned about potential impacts of power supply variability caused by transient clouds. Utilities and
control system operators need to adapt their planning, scheduling, and operating strategies to
accommodate this variability while at the same time maintaining existing standards of reliability.

It is impossible to effectively manage these systems, however, without a clear understanding of PV
output variability or the methods to quantify it. Whether forecasting loads and scheduling capacity
several hours ahead or planning for reserve resources years into the future, the industry needs to be
able to quantify expected output variability for fleets of up to hundreds of thousands of PV systems
spread across large geographical territories. Underestimating reserve requirements may result in a
failure to meet reliability standards and an unstable power system. Overestimating reserve
requirements may result in an unnecessary expenditure of capital and higher operating costs.

The present objective is to develop analytical methods and tools to quantify PV fleet output variability.
Variability in time intervals ranging from a few seconds to a few minutes is of primary interest since
control area reserves are dispatched over these time intervals. For example, regulation reserves might
be dispatched at an ISO every five seconds through a broadcast signal. Knowledge about PV fleet
variability in five-second intervals could be used to determine the resources necessary to provide
frequency regulation service in response to power fluctuations.

Variability of a PV fleet is thus a measure of the magnitude of changes in its aggregate power output
corresponding to the defined time interval and taken over a representative study period. Note that it is
the change in output, rather than the output itself, that is desired. Also note that, for each time interval
the change in output may vary in both magnitude and sign (positive and negative). A statistical metric is
therefore employed in order to quantify variability: the standard deviation of the change in fleet power
output.

It is helpful to graphically illustrate what is meant by output variability. The left side of Figure 1 presents
10-second irradiance data (PV power output is almost directly proportional to irradiance) and the right
side of the figure presents the change in irradiance using a 10-second time interval for a network of 25
weather monitoring stations in a 400-meter by 400-meter grid located at Cordelia Junction, CA on
November 7, 2010 (Hoff and Norris, 2010). The light gray lines correspond to irradiance and variability
for a single location and the dark red lines correspond to average irradiance distributed across 25
locations. Results suggest that spreading capacity across 25 locations rather than concentrating it at a
single location reduces variability by more than 70 percent in this particular instance.
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Figure 1. Twenty-five location network reduces 10-second variability by more than 70 percent in a 400
meter x 400 meter grid at Cordelia Junction, CA on November 7, 2010.
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A “fleet computation” approach can be taken to calculate output variability for a fleet of PV systems as
follows: identify the PV systems that constitute the fleet to be studied; select the time interval and time
period of concern (e.g., one-minute changes evaluated over a one-year period); obtain time-
synchronized solar irradiance data for each location where a PV system is to be sited; simulate output
for each PV system using standard modeling tools; sum the output from each individual system to
obtain the combined fleet output; calculate the change in fleet output for each time interval; and finally
calculate the resulting statistical output variability from the stream of values.

This “fleet computation” approach, while technically valid, is difficult to implement in practice for
several reasons. First, insolation data is not available in sufficient resolution (either time resolution or
geographical resolution). For example, SolarAnywhere (2010), which provides operational real-time
insolation data for the continental U.S. and Hawaii, is currently based on a 10 km x 10 km grid and a one-
hour time interval. It has a practical real-time limit of one-half hour and a few km based on current
satellite technology. Fleet computation could not be performed for, say, systems spaced 0.5 km apart
with a four-minute time interval. Second, PV variability determined using the fleet computation
approach is only applicable to studies having a matching time interval of interest and a fixed fleet
selection. The study would have to be re-commissioned whenever additional PV systems came on-line.
Finally, calculations are highly computation intensive, and thus are not suitable for real-time operations.

A more viable approach is to streamline the calculations through the use of a general-purpose PV output
variability methodology. The method needs to quantify short-term fleet power output variability using
the observations that sky clearness and sun position drive the changes in the short-term output for
individual PV systems and that physical parameters (i.e., dimensions, plant spacing, number of plants,
etc.) determine overall fleet variability.

Hoff and Perez (2010) developed a simplified model as a first step towards a general method to quantify
the output variability resulting from an ensemble of equally-spaced, identical PV systems. They defined
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output variability to be the standard deviation of the change in output over some time interval (such as
one minute), using data taken from some time period (such as one year).

The simplified model covered the special case when the change in output between locations is
uncorrelated (i.e., cloud impacts at one site are too distant to have predictable effects at another for the
considered time scale), fleet capacity is equally distributed, and the variance at each location is the
same. Under these conditions, Hoff and Perez showed that fleet output variability equals the output
variability at any one location divided by the square root of the number of locations:*

1
Fleet_% (1)

Ore =~ =
A TN

where Gftleet is the standard deviation of the change in output of the fleet using a time interval of At,

a4, is the standard deviation of the change in output of the fleet concentrated at a single location, and N
is the number of uncorrelated locations.

Mills and Wiser (2010) have derived a similar result that relates variability to the square root of the
number of systems when the locations are uncorrelated.

Maximum Output Variability
Equation ( 1) has important implications for utility planners. It allows them to determine reserve
capacity requirements to mitigate worst case fleet variability. For example, suppose that the variability

of a single system was 10 kW per minute and there were 100 uncorrelated identical systems in the fleet.
100%10kW
V100

confidence level (e.g., they may choose 3 standard deviations) to determine the required reserve
capacity (e.g., 3x 0.1 MW = 0.3 MW).

Total fleet variability equals 0.1 MW ( ) per minute. The planner could then apply the desired

This calculation is applicable when two fundamental conditions are satisfied: (1) the output variability at
a single location can be quantified and (2) the change in output variability between locations is
uncorrelated.

Consider the first condition. One approach to determining single location variability (aAlt) is to analyze
historical solar resource data for the location of interest. The data would need to have been collected at
a rate that accommodates the time interval of interest (perhaps down to a few seconds) over a
substantial and representative period of time (perhaps over several years). Such high-speed, high-
resolution data is not generally available.?

An alternative approach is to construct a data set that simulates worst case variability conditions. The
theoretically worst case variability of a single PV plant would be that it cycles alternately between 0 and
100 percent of its rated output every time interval. For example, suppose that the PV plant is rated at 1

! See Equation (8) in Hoff and Perez (2010).
> One of the few examples of this sort of data is provided by Kuszamaul, et. al. (2010).
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MW and the time interval of interest is 1 minute. As illustrated in Table 1, maximum variability occurs
when the PV plant is at full power at 12:00, zero power at 12:01, full power at 12:02, etc. As illustrated
in the right side of the table, the corresponding change in power fluctuates between -1 and 1 MW. The
standard deviation® of the change in power output equals 1 MW per minute. That is, a 1 MW PV plant
that is exhibiting maximum variability over a 1 minute time interval has a 1 MW per minute standard
deviation. This would imply that 1 MW of reserve capacity is required to compensate for the output
variability for a single plant.

Table 1. Maximum change in power output at one location.

Time Power (MW) Change (MW/min)
12:00 1 -1

12:01 0 +1

12:02 1 -1

12:03 0 +1

12:04 1

Suppose that the PV “fleet” capacity was split between two locations and each were to exhibit
maximum output variability. Two possible scenarios exist. The first scenario, illustrated in Table 2,
assumes that both plants turn on and off simultaneously. As was the case where all capacity is
concentrated at a single location, the change in output fluctuates between -1 and 1 MW and the
standard deviation for this scenario is 1 MW per minute.

The second scenario, illustrated in Table 3, assumes that the plants cycle on and off alternately with a
time shift of 1 minute. In this case, the change in output from the first location cancels the change in
output at the second location. The result of this scenario is a standard deviation of 0 MW per minute.

Itis incorrect to conclude, however, that the upper bound of output variability for 1 MW of PV is 1 MW
per minute because this is the larger value of the two scenarios (the first equals 1 MW per minute and
the second equals 0 MW per minute). This is because each of the two scenarios violates the assumed
condition that the locations are uncorrelated. Specifically, the change in output between the two
locations has perfect positive correlation in the first scenario (i.e., correlation coefficient equals 1) and
perfect negative correlation in the second scenario (i.e., correlation coefficient equals -1).

® The standard deviation of a random variable X equals the square root of the expected value of X squared minus

the square of the expected value of X. o0 = /E[X?] — E[X]?.
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Table 2. Maximum change in power output at two locations (scenario 1).

Time Power (MW) Change (MW/min)
Fleet
Plant 1 Plant 2 (1+2)
12:00 0.5 0.5 1 -1
12:01 0 0 0 +1
12:02 0.5 0.5 1 -1
12:03 0 0 0 +1
12:04 0.5 0.5 1

Table 3. Maximum change in power output at two locations (scenario 2).

Time Power (MW) Change (MW/min)
Plant 1 Plant 2 Fleet 1+2

12:00 0.5 0 0.5 0

12:01 0 0.5 0.5 0

12:02 0.5 0 0.5 0

12:03 0 0.5 0.5 0

12:04 0.5 0 0.5

Feasible Maximum Output Variability

These scenarios demonstrate that it is impossible for two systems to exhibit the behavior of worst case
variance individually (by cycling on and off at each interval) without having either perfect positive or
perfect negative correlation. Indeed, for each system to exhibit its maximum variance, its output
changes must be exactly in tempo with the time interval, loosely analogous to each member of an
orchestra following in time to its conductor, in which case the systems would by definition have perfect
correlation (whether positive or negative). By this reasoning, the maximum output variability scenario
described above (1 MW of variability for each 1 MW of fleet capacity) is impossible. When the systems
have less than perfect correlation, as must be the case for any real-world fleet, the variability of the
combined fleet must be less than the total fleet capacity.

To correct the worst case scenario, retain the assumption that each power change is either a transition
from zero output to full output or from full output to zero output. This assumption in itself is highly
conservative since the impacts of cloud transients on PV systems will almost never produce changes
with magnitudes as high as 100 percent of rated output and will generally produce changes much less
than 100 percent. As for timing, rather than being synchronized, each system is assumed to cycle on and
off in a random fashion, representing fleets of PV systems with outputs that are uncorrelated.

Random timing of power output changes is illustrated for a single location in Table 4 fora 1 MW PV
system. Suppose that it is 12:00 and the time interval is 1 minute. There is a 50 percent chance that the
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plant is on and a 50 percent chance that the plant is off at 12:00. If the plant is on at 12:00, then there is
a 50 percent chance it will turn off and a 50 percent chance it will remain on at 12:01. If the plant is off
at 12:00, then there is a 50 percent chance it will stay off and a 50 percent chance it will turn on at
12:01. The right column in Table 4 presents the probability distribution of the change in power. At each
time interval, there is a 25 percent chance of a 1 MW per minute decrease in power, a 50 percent
chance of no change in output, and a 25 percent chance of a 1 MW per minute increase in power.

Note that while this is the maximum possible change, it is extremely unlikely that such a distribution
would actually exist. First, weather conditions would have to be exceptionally erratic. Second, clouds
would need to be so dark that there would be no output when covering a PV system. Third, the entire
system would have to turn on and off, rather than a subset of the arrays. Fourth, each PV system would
need to operate as a “point source” of output; Kuszamaul et. al. (2010) and Mills et. al. (2009) have
demonstrated that, in fact, a smoothing effect occurs as system size increases.*

Table 4. Maximum change in power output assuming random output.

Time Power (MW) Change (MW/min)

50% 50% 25% chance of 1

12:00 50% chance of 0
25% chance of -1
50%/ \50% 50%/ \50%

12:01 | Plant Off (0) “ Plant On (1) ‘ l Plant Off (0) “ Plant On (1) ‘

Scenario 1 Scenario 2

With these caveats, the above distribution is taken for the current purposes. This distribution has a

- 1. . .
standard deviation ofﬁtlmes 1 MW.? If the entire fleet of PV systems were concentrated at a single

point, and the fleet had a capacity of C

Fleet then the maximum standard deviation of change in output

equals:

CFleet ( 2 )
Maximum o}, = ——
At \/E
The maximum output variability for a fleet of uncorrelated locations can be calculated using this
numerical definition of the maximum output variability for a single system by substituting Equation (2)
into Equation ( 1 ).The result is that that maximum output variability equals fleet capacity divided by the

square root of 2 times the number of uncorrelated locations.

Fleet Fleet (3 )
Maximum o,;°®" = —
V2N

* See Figure 13 in Kuszamaul et. al. (2010) and Figure 7 in Mills et. al. (2009).

* o =/[(0.25)(=1)2 + (0.50)(0)2 + (0.25)(1)2] — [(0.25)(—1) + (0.50)(0) + (0.25)(1)]2 = \/%
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Equation ( 3 ) places an upper bound on the maximum output variability for any time interval as long as
the change in output between locations is uncorrelated. Actual results are likely to be lower. This
practical upper bound on single point output is substantiated by a wealth of empirical evidence (see
Perez et al., 2010a).

Example

Suppose that a utility system plans to incorporate 5,000 MW of PV. Figure 2 presents the maximum
output variability calculated using Equation ( 3 ) for PV fleets with capacities ranging from 0 to 5,000
MW based on two fleet composition strategies. The blue line is the variability when the fleet is
composed of uncorrelated 1 MW systems. The red line is the variability when the fleet is composed of
uncorrelated 100 MW systems. As illustrated in the figure at the 5,000 MW level, if 100 MW systems are
installed at 50 locations (N=50) with uncorrelated changes in output, maximum output variability is 500
MW per time interval, or 10 percent of fleet capacity. However, if 1 MW PV systems are installed at
5,000 locations (N=5,000) with uncorrelated changes in output, maximum output variability is 50 MW,
or 1 percent of fleet capacity.®

This example illustrates the potential benefit of dividing the PV capacity into small systems, and
spreading them apart geographically so that output changes are uncorrelated. More importantly, it also
illustrates the unnecessary potential cost that could be incurred if system planners were to procure
reserves without adequate tools for quantifying PV variability. The dotted line represents the reserve
resources that would be procured when each MW of PV was fully “backed up” with a MW of fossil,
battery, or other dispatchable resource. In the N=5,000 example, such a planning practice — at least for
fleets made up of uncorrelated systems— would result in capital expenditures 99 times the required
amounts.

Figure 2. Maximum variability for 1 MW and 100 MW system sizes with uncorrelated changes.

= 5,000 -

) 2

= 4,000

=

2 3,000

&

z 2,000 e System
= L7 Size
£ 1,000 .’

= el 100 MW
S O i 1MW

0 1,000 2,000 3,000 4,000 5,000
Fleet Capacity (MW)

6 Appendix A illustrates how to verify these results using an Excel spreadsheet.
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Correlation versus Distance

Background: Critical Factors Affecting Correlation

The critical factors that affect output variability are the clearness of the sky, sun position, and PV fleet
orientation (i.e., dimensions, plant spacing, number of plants, etc.). To improve accuracy, Hoff and Perez
(2010) introduced a parameter called the Dispersion Factor. The Dispersion Factor is a parameter that
incorporates the layout of a fleet of PV systems, the time scales of concern, and the motion of cloud
interferences over the PV fleet. Hoff and Perez demonstrated that relative output variability resulting
from the deployment of multiple plants decreased quasi-exponentially as a function of the generating
resource’s Dispersion Factor. Their results demonstrated that relative output variability (1) decreases as
the distance between sites increases; (2) decreases more slowly as the time interval increases; and (3)
decreases more slowly as the cloud transit speed increases.

Mills and Wiser (2010) analyzed measured one-minute insolation data over an extended period of time
for 23 time-synchronized sites in the Southern Great Plains network of the Atmospheric Radiation
Measurement (ARM) program. Their results demonstrated’ that the correlation of the change in the
global clear sky index (1) decreases as the distance between sites increases and (2) decreases more
slowly as the time interval increases.

Perez et. al. (2010b) analyzed the correlation between the variability observed at two neighboring sites
as a function of their distance and of the considered variability time scale. The authors used 20-second
to one-minute data to construct virtual networks at 24 US locations from the ARM program (Stokes and
Schwartz, 1994) and the SURFRAD Network and cloud speed derived from SolarAnywhere (2010) to
calculate the station pair correlations for distances ranging from 100 meters to 100 km and from
variability time scales ranging from 20 seconds to 15 minutes. Their results demonstrated that the
correlation of the change in global clear sky index (1) decreases as the distance between sites increases
and (2) decreases more slowly as the time interval increases.

The consistent conclusions® of these studies are that correlation: (1) decreases as the distance between
sites increases and (2) decreases more slowly as the time interval increases. Hoff and Perez (2010) add
that the correlation decreases more slowly as the speed of the clouds increases.

Objective

Utility planners clearly require a tool that can reliably quantify the maximum output variability of PV
fleets using a manageable amount of data and analysis. Equation ( 3 ) would potentially meet this
requirement if the change in output between locations were uncorrelated (i.e., correlation coefficient is
zero). In real fleets, PV systems will generally have some degree of correlation, so any planning tool will
have to incorporate correlation effects in calculating actual fleet variability.

This paper takes a step towards a general method by analyzing the correlation coefficient of the change
in clearness index between two locations as a function of distance, time interval, and other parameters.

7 See Figure 5 in Mills and Wiser (2010).
® The results apply to either changes in PV output directly or changes in the clear sky index
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It uses hourly global horizontal insolation data from SolarAnywhere (2010) to calculate correlation
coefficients for 70,000 scenarios across three separate geographic regions in the United States
(Southwest, Southern Great Plains, and Hawaii). The correlation coefficients taken from these scenarios
are then compared to a method that could prove useful when integrated into utility planning and
operations tool. Recognizing that the method must also be validated for shorter time intervals (several
seconds to several minutes), its results are compared to studies based on 10-second, 20-second, and 1-
minute insolation data sets.

Approach

Hoff and Perez (2010) defined PV fleet variability as the standard deviation of its power output changes
using a selected sampling time interval (e.g., such as one minute or one hour) and analysis period (such
as one year), as expressed relative to the fleet capacity. To simplify the work, they formulated it in terms
of the change in insolation rather than the change in PV power.

As stated earlier, sky clearness and sun position drive the changes in short-term output for individual PV
systems. Mills and Wiser (2010) and Perez, et. al (2010) subsequently isolated the random component of
output change and examined changes attributable only to changes in global clear sky (or clearness)
index. The global clearness index equals the measured global horizontal insolation divided by the clear
sky insolation.

This paper continues in the direction of Mills and Wiser (2010) and Perez, et. al. (2010) and focuses on

changes in the global clearness index.

Change in Global Clearness Index

The global clearness index at a specific point in time is typically referred to as Kt*. It equals the
measured global horizontal insolation (GHI) divided by the clear-sky insolation. This paper refers to the
change in the index between two points in time as AKt*. Since the change occurs over some specified
time interval, At, at some specific location n, the variable is fully qualified as AKt*?,At. This only
represents one pair of points in time. A set of values is identified by convention by bolding the variable.
Thus, AKt*Kt is the set of changes in the clearness indices at a specific location using a specific time
interval over a specific time period.

AKt*y, = {(t1, AKEE, a), (82, AKEE Ar), o, (E1, AKE L pr) } (4)
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Table 5 illustrates how to calculate the change in clearness index (AKt*) during conditions of rapidly
changing insolation. For example, AKt* between 12:00 and 12:01 equals the difference between Kt* at
12:01 and Kt* at 12:00 (0.5 -1.0 =-0.5).

Table 5. Example of how to calculate change in clearness index (AKt*) using At = 1 minute.

Time GHI Clear-sky GHI Kt* AKt*
12:00 1.0 1.0 1.0 -0.5
12:01 0.5 1.0 0.5 -0.5
12:02 0.0 1.0 0.0 +0.5
12:03 0.5 1.0 0.5 +0.5
12:04 1.0 1.0 1.0

Correlation and dependence in statistics are any of a broad class of statistical relationships between two

or more random variables or observed data values (Wikipedia 2010). Let AKt*,; and AKt*ﬁt represent
two sets of observed data values for the change in the clearness index that have a mean of 0 and
standard deviations, g; and g,.°

Pearson’s product-moment correlation coefficient (typically referred to simply as the correlation

coefficient) equals the expected value of AKt*it times AKt*it divided by the corresponding standard
deviations.

E[AKt 3, AKt (5)

010,

P12 =

The analysis is performed as follows:

Select a geographic region for analysis

Select a location for the first part of the pair
Select a location for the second part of the pair
Select a time interval for the analysis

Select a clear sky irradiance level bin

Obtain detailed insolation data

Calculate the correlation coefficient *°

O N U A WNRE

Repeat the calculation for all sets of location pairs, time intervals, and clear sky irradiance bins.

° The expected value of AKt* equals 0 as long as the starting and ending GHI values are the same. This condition is
satisfied when the time period of the analysis is performed over one day because the starting and ending GHI both
equal 0. It will also be approximately true when the analysis encompasses many data points (as would be the case,
for example, of an analysis of one hour of data using a one-minute time interval).

10 Appendix B illustrates how to calculate AKt* correlation coefficients.
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The focus of this paper is on trying to determine if patterns existing that help to better quantify
correlation coefficients. As part of the objective, a method is tested that produces the desired output
parameter of the correlation coefficient of the change in the clearness index between two separate
locations. As discussed by Hoff and Perez (2010), the inputs into this method include the distance
between the two locations, time interval, and location-specific parameters based on empirical weather
data, in particular, cloud speed.

Results

Scenario Specification
As summarized in Table 6, three separate geographic regions in the United States were selected for
analysis: Southwest, Southern Great Plains, and Hawaii. The first location (denoted by each of several

yellow squares in the figures), was selected using a grid size of 2.0°, 1.0°, or 0.5° for the Southwest,
Southern Great Plains, and Hawaii, correspondingly. The second location (denoted by a red circle in the
figures) was selected between 0.1° and 2.9° (about 10 to 300 km) from the first location (other map
coordinates were available but the illustrated points provided sufficient data and ease of analysis, so

were ignored). Hourly insolation data was obtained for each of the two locations covering the period
January 1, 1998 through September 30, 2010 from SolarAnywhere (2010). The analysis was then
performed as described above for time intervals of 1, 2, 3, and 4 hours and for 10 separate clear sky
irradiance bins. This analysis resulted in more than 70,000 correlation coefficients.

Table 6. Summary of input data.

Region S thst - Southern Great Plains Hawaii
e Bay Honuapo Bay
- ; 2 . Kaalualu Bay -

Location #1 | Latitude: 32°to 42° Latitude: 35°to 38° Latitude: 19°to 20°

Longitude: -125° to -109° Longitude: -99° to -96° Longitude: -156° to -155°

Grid Size: 2.0° Grid Size: 1.0° Grid Size:  0.5°
Location #2 | 0.1°,0.3°, ..., 1.9° from #1 0.1°,0.3°, ..., 2.9° from #1 0.1°,0.2°, ..., 1.0° from #1
Time 1, 2, 3, and 4 hours 1, 2, 3, and 4 hours 1, 2, 3, and 4 hours
Intervals
Clear Sky 10 irradiance bins in intervals 10 irradiance bins in 10 irradiance bins in
Irradiance | of 0.1 kW/m? increments of 0.1 kW/m? increments of 0.1 kW/m?
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Correlation Coefficients

Figure 3 presents the correlation coefficients for the Southwest.'* The columns summarize the results
for each time interval and the rows present the measured correlation coefficients versus several
alternative candidate sets of variables. The first column summarizes results for a time interval of 1 hour.
The second, third, and fourth columns plot the same results using time intervals of 2, 3, and 4 hours.
Results in the top row present correlation coefficients versus the distance between the two locations.
Results in the middle row present correlation coefficients versus distance divided by time interval.
Results in the bottom row present correlation coefficients versus distance divided by time interval
multiplied by relative speed;? this term is related to the Dispersion Factor introduced by Hoff and Perez
(2010). The dashed line in the bottom figures represents the results of a generalized method, proposed
in this paper for use in future tools, that will be validated in the present analysis. Results are calculated
using parameters obtained from SolarAnywhere.

Figure 4 and Figure 5 present comparative results for the Great Plains anc Hawaii. The patterns
presented in the figures are similar across all time intervals in the three geographic locations. Figure 6

compresses the results for each location and presents results where all time intervals are combined into
the same figure.

Figure 3. Correlation coefficients presented by time interval for Southwest.
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Note: Distance / (Time Interval * Relative Speed) is related to Dispersion Factor

" The data in all of the figures represent randomly selected samples of points in order to make the results more
readable.

' Relative speed equals the implied speed derived for the specific location from SolarAnywhere data by the
average implied speed across the entire geographic region. Relative speed is only used for presentation purposes
for the benefit of the reader so that the scale of the x-axis remains constant.
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Figure 4. Correlation coefficients presented by time interval for Great Plains.
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Figure 6. Correlation coefficients for all locations and time intervals.
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Discussion

The analysis provides several key findings. First, consistent with previous studies, the correlation
coefficients decrease with increasing distance (top row of Figure 6). Second, also consistent with
previous studies, this decrease occurs more slowly with longer time intervals (top row of Figure 6). An
alternative way of viewing this result is that correlation coefficients decrease at a similar rate when
plotted versus distance divided by time interval (middle row of Figure 6). Third, the scatter in results is
further decreased when a relative speed™ is introduced for the first location in the pair of locations
(bottom row of Figure 6). Finally, the generalized method, shown by the dashed black line in the bottom
row of Figure 6, fits the empirical data quite well when calibrated using the location-specific derived
input parameters.

Results Project to Shorter Time Intervals

An encouraging result of the foregoing analysis is the ability of the proposed general method, validated
directly with several empirical data sets, to predict correlation coefficients with such accuracy. Even
more encouraging is that the method is shown to be valid regardless of the selected time interval. While
input data to the method was taken from the SolarAnywhere data set with a one-hour time interval, the
method is shown to produce accurate correlation coefficients for one-hour, two-hour, three-hour, and
four-hour time intervals. This finding prompted the authors to evaluate the potential of using the
method based on parameters derived from the SolarAnywhere data set to project results to time
intervals shorter than one hour.
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It would be a highly valuable finding if the method could be shown to produce accurate results for time
intervals shorter than the available raw data. It would mean that the existing SolarAnywhere data set
could be used to determine variability for fleets across the U.S., reducing the need for high-speed, high-
resolution data that is currently unavailable.

While the desired objective is to demonstrate that the method accurately determines correlation
coefficients (and therefore variability) as a function of PV spacing, a mathematically equivalent objective
is to show that, for a given correlation coefficient, it is possible to accurately determine spacing between
PV systems.

The circles in Figure 7 correspond to the method results taken from the dotted curve in the bottom row
of Figure 6. For example, Figure 6 implies that PV systems need to be spaced 40 km apart in the Great
Plains in order to achieve a 25 percent correlation coefficient using a 60 minute time interval. Triple the
time interval to 180 minutes and plants need to be spaced triple the distance (120 km apart) to achieve
the same 25 percent correlation coefficient.

The solid lines connecting the four time interval observations for each location in Figure 7 illustrate that
the relationship is linearly related to the time interval. The figure begs the question as to whether the
results can be projected in the region with shorter time intervals (i.e., the gray sections of the figures).

Figure 7. Results scale linearly with the time interval for a fixed correlation coefficient.
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Evaluation of Time-Independence Claim

The above linear relationship suggests that the method is independent of selected time interval, even
down to the very short time intervals (several seconds to several minutes) that are of primary interest to
the utilities. This section provides an initial validation of time-independence by comparing results
calculated from the one-hour SolarAnywhere data set against results from independent studies that
used 10-second, 20-second, and one-minute data sets.

Geographic Diversity Study
Mills and Wiser (2010) used measured one-minute insolation data for 23 time-synchronized sites in the
Southern Great Plains network of the Atmospheric Radiation Measurement (ARM) program to
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characterize the variability of PV with different degrees of geographic diversity. That report presented®®
the correlation of changes in global clear sky index between these geographically dispersed sites. Mills
and Wiser provided an electronic version of their results and these were used to compare against the
general method proposed here. While the one-hour SolarAnywhere data set was used as input to the
general method, correlation coefficients were calculated that corresponded to much shorter time
intervals in the Mills and Wiser study. The results, presented in Figure 8, are comparable to the Mills and
Wiser study even down to one-minute time intervals.™

Figure 8. Comparison of results to geographic diversity study.

1-Minute Time Interval 5-Minute Time Interval 15-Minute Time Interval
e 100% Actual, using 1-min H 100% | Actual, using 1-min = 100% Actual, using 1-min
K] measured data K measured data 2 measured data
& 80% ——Modeled, using 1-hour e 80% ——Modeled, using 1-hour £ 0% ——Modeled, using 1-hour
@ SalatAnywhere data SolarAnywhere data ] Solarinywhere data
8 60% 8 60% 8 60%
§ 0% § aox% 5 ao%
E = k]
g 20% 2 20% g 20%
] :
8 0% 3 0% — o 0% \\')-——- |
1] 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 |
Distance Between Sites (km) Distance Between Sites (km) Distance Between Sites (km)
30-Minute Time Interval 60-Minute Time Interval 180-Minute Time Interval
& 100% Actual, using 1-min & 100% [+ Actual, using 1-min & 100% [ Actual, using 1-min
8 measured data ] measured data 8 meawired data
§ 80% ——Modeled, using 1-hour § 80% ——Modeled, using 1-hour g 80% ——Modeled, using 1-hour
o SolarAnywhere data o SolarAnywhere data @ o Solarinywhere data
3 60% 8 60% s 60% o
.E 40% .5 40% § 0%
s i k] k]
s 20% \& s 20% S 20%
E E £
S 0% T e T e 3 0% e S 0%
1] 100 200 300 400 500 V] 100 200 300 400 500 1] 100 200 300 400 500 |
Distance Between Sites (km) Distance Between Sites (km) Distance Between Sites (km)
Virtual Network Study

Perez et. al. (2010) obtained 20-second to one-minute insolation data for 24 measuring stations,
including 17 stations in the ARM network and 7 stations in the SURFRAD network. They constructed
one-dimensional virtual networks™ using satellite-derived cloud speeds to translate time measurements
into space measurements. They then calculated correlation coefficients between the change in
clearness index for various time intervals and distances. Figure 9 presents some of the key results from
that study. Figure 10 re-plots the data from the virtual network study along with corresponding
projections from the current study (based on input parameters calculated one-hour SolarAnywhere
data). Results compare well to virtual network study down to correlation coefficients of 40 percent for
time intervals between 20 seconds to 15 minutes. Results from the virtual network study correlation
coefficients below 40 percent may be lower as a result of the negative correlation arising from locations
that are very close together.

B Figure 5 in Mills and Wiser (2010).

" The minor differences in 180-minute time intervals are due to methodological differences between the two
studies.

1> See Hoff and Perez (2010) for a discussion of virtual network construction.
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Figure 9. Key results from virtual network study.
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Figure 10. Comparison of results to virtual network study.
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High Density Weather Station Network

A third data set was provided by Hoff and Norris (2010). This data is from a network of 25 weather
collection devices. This network is interesting from several perspectives. First, it is one of the few known
high-density networks providing high speed data (see Kuszamaul 2010 for a network of 24 sensors in
Lanai, Hl). Second, it is designed to be deployed to multiple locations for short durations of time and
thus is mobile.

This network was deployed at Cordelia Junction, CA in a 400-meter by 400-meter configuration (a
square composed of 100 meters between stations). Figure 11 presents the correlation coefficients for
November 7, 2010. The irradiance data associated with these coefficients is presented in Figure 1. Since
there are 25 locations, there are 625 possible combinations, 300 of which are unique. Each of these
combinations was evaluated using nine different time intervals (10, 20, 30, 40, 50, 60, 90, 120, and 300
seconds). Thus, there are 2,700 unique scenarios.

As can be seen by the black line in the figure, the results fits the empirical data fairly well. It is
interesting to note that this data set exhibits some of the negative correlation effects identified by Hoff
and Perez (2010) and Perez, et. al. (2010b) using the virtual network approach.

Figure 11. Correlation coefficients for high-density, 25 unit network at Cordelia Junction, CA on
November 7, 2010 for time intervals from 10 seconds to 5 minutes.
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Conclusions

The objective of this paper was to lay the foundation for a new method that could be employed in
future utility tools to enable the calculation of PV fleet variability for planning and operational purposes.
The method used satellite-derived data and physical fleet parameters to determine correlation between
PV sites, from which fleet variability can be derived.
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The paper used hourly global horizontal insolation data from SolarAnywhere to validate the method by
calculating correlation coefficients for 70,000 scenarios across three separate geographic regions in the
United States (Southwest, Southern Great Plains, and Hawaii), while varying distance, time interval,
insolation bin, and other parameters. These empirical correlation coefficients compared favorably with
those derived by the method. The method was then shown to be independent of selected time interval,
such that hourly satellite data could be used to calculate correlation coefficients for very short time
intervals (several seconds to several minutes). These extrapolated results were validated using results
from studies that are based on 20-second to one-minute insolation data.

The paper had several important findings. First, correlation coefficients decreased with increasing
distance. Second, correlation coefficients decreased at a similar rate when plotted versus distance
divided by time interval. Third, the accuracy of results was further improved when an implied speed
term is introduced into the analysis. Together, these results provided the basis for validating the
generalized method. The method, based on input parameters from hourly SolarAnywhere data,
produced correlation coefficients for short time intervals (seconds to minutes) that compared quite well
to results from independent studies that used 10-second, 20-second, and one-minute data sets.

The preliminary conclusion of this work is that the approach validated in this paper can be used to
identify the conditions under which the change in output between locations are uncorrelated. As a
result, it can be used to satisfy one of the initial motivations of this study: the desire to equip utility
planners with a tool capable of placing an upper bound on the maximum output variability of a fleet of
PV systems using a manageable amount of data and analysis.

The results, however, may have further implications. In particular, the results may be the basis for
quantifying output variability even when correlation exists.

Next Steps

This study demonstrated the ability to predict correlation coefficients using time intervals of 1 to 4 hours
using multi-year data sets. Results also suggested that the method is valid for short time intervals when
compared to high speed studies, again based on long time period data sets.

The next steps will be to further validate the results for short time intervals using measured higher
speed data. Plans include the use of: 1 km x 1 km grid, %-hour SolarAnywhere data in selected locations;
1 km x 1 km grid, one-minute extrapolated SolarAnywhere data in selected locations; and additional 10-
second data from the mobile, high-density network described earlier (Hoff and Norris, 2010). A
particularly important focus of this work will be to assess the method’s ability to predict correlation
between locations over short time periods as well as long time periods (several hours versus several
years).
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Appendix A: Verification of Worst Case Scenario Results Using Excel
Table 7 and Figure 12 illustrate how to construct the worst case scenario using Excel. Construct a

spreadsheet as shown in Table 7 by randomly generating either 0 or 1 for each minute for all 5,000

locations between 12:00 and 13:00. Sum the fleet output. Calculate the change in fleet output. Calculate

output variability by calculating the standard deviation of the change in power.

Table 7. Worst case example for 5,000 independent 1 MW systems.

Time Power (MW) Change (MW/min)
Plant #1 | Plant #2 | Plant #3 #5000 Fleet

12:00 1 0 0 1 2,519 -33

12:01 0 0 1 0 2,552 -6

12:02 0 1 0 1 2,558 13

12:03 1 0 0 1 2,545 5

12:04 0 1 1 0 2,540 -12

13:00 0 1 1 0 2,525

Figure 12. Simulated fleet output with maximum random variability.
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Appendix B

Table 8 and Figure 13 present three examples of how to calculate the change in the clearness index,
which can then be used to calculate correlation coefficients.

Table 8. Data to calculate correlation coefficients.

Correlation coefficient equals 1.0

Time GHI (kw/m?) Clear-Sky | (kW/m?) | Clearness Index Change in Clearness Index

#1 #2 #1 #2 #1 #2 #1 #2
12:00 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0
12:01 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
12:02 0.0 0.0 1.0 1.0 0.0 0.0 +1.0 +1.0
12:03 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
12:04 1.0 1.0 1.0 1.0 1.0 1.0

Correlation coefficient equals 0.5

Time GHI (kW/m?) Clear-Sky | (kW/m?) | Clearness Index Change in Clearness Index

#1 #2 #1 #2 #1 #2 #1 #2
12:00 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 0.0
12:01 0.0 1.0 1.0 1.0 0.0 1.0 0.0 -1.0
12:02 0.0 0.0 1.0 1.0 0.0 0.0 +1.0 +1.0
12:03 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
12:04 1.0 1.0 1.0 1.0 1.0 1.0

Correlation coefficient equals 0

Time GHI (kw/m?) Clear-Sky | (kW/m?) | Clearness Index Change in Clearness Index
#1 #2 #1 #2 #1 #2 #1 #2
12:00 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 0.0
12:01 0.0 1.0 1.0 1.0 0.0 1.0 0.0 -1.0
12:02 0.0 0.0 1.0 1.0 0.0 0.0 +1.0 0.0
12:03 1.0 0.0 1.0 1.0 1.0 0.0 0.0 +1.0
12:04 1.0 1.0 1.0 1.0 1.0 1.0
Figure 13. Change in clearness index for Location 2 vs. Location 1.
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