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1. Executive Summary 

A number of approaches were tested in developing Marine Layer (ML) forecasts for 36 hours ahead. In 

particular - Pattern Recognition (PR), Probabilistic Model (PM), and Local Analysis and Prediction 

System/Weather Research and Forecasting (LAPS/WRF) models were developed and tested, and an 

optimal combination of models was selected based on their performance vs. time horizon.  

Because PM, PR and WRF performed with different accuracy depending on the geographic location, time 

of day, and forecast horizon a combination of Probabilistic and WRF approach were adopted to deliver 

the ML forecast. Currently the best mix of models is the use of probabilistic forecast for the present day 

(7am – 7 pm) and the use of WRF for hours beyond that. The PM approach captures attenuation of ML 

through the day really well but underperforms on the day ahead. In contrast, the current configuration 

WRF is capable of developing future cloud fields but is relatively weak in capturing them within the short 

time horizon. The results of our work are encouraging with overall agreement of the developed forecasts 

with observations of 60% to 80% (as in number of 1km cells in the service area where ML is forecasted 

correctly).  

It is expected that LAPS/WRF, with some improvements, will become a source of both Marine Layer and 

solar irradiance forecasts for the SolarSatData® (GPLI’s solar power prediction platform - SSD) program in 

the near future. To achieve this, real time ML classification results will have to be integrated into 

LAPS/WRF “on the fly” to improve the accuracy of short time horizon forecasts. Testing should be carried 

on integration of ML forecast with the existing SSD software as well.  

It is important to carry on further development of forecasting techniques to improve accuracy by adjusting 

classification techniques, introducing real time forecast validation, and improving the PM, PR and 

LAPS/WRF models. 

 

 

2. Introduction 

GPLI has previously developed a successful methodology for using visible and infra-red (IR) channel 

satellite data to estimate the probability of ML in Southern California. This project is building upon the 
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previous success. The objective of this project was to develop and implement Marine Layer (ML) forecast 

for a 1x1 km grid for San Diego County. 

San Diego County is a region heavily affected by ML events, having the highest extent and probability of 

ML occurrence. The influence of ML is the strongest in coastal areas up to 50 km away from coast. 

Accordingly, previously developed ML classification methodology could be used successfully in the spatial 

buffer along the coastline. The extent of ML inland is largest in May and recedes towards coast gradually 

through the summer and fall. We have previously established that an understanding of the climatological 

drivers for ML events is required to improve the forecasting of ML probabilities. We have addressed this 

need by implementing state of the art LAPS/WRF weather forecasting augmented by probabilistic 

modeling and artificial intelligence techniques. The detection of ML in this area is vital for the proper 

integration of solar resource and power forecasting. Due to the nature of the ML it is particularly difficult 

to forecast; publically available numerical weather forecast models, with their coarse spatial grids, 

routinely miss the ML. Marine layer has a similar effect to solar irradiance as clouds, namely that the 

available solar resource is diminished as a result, ultimately leading to a drop in available PV power.  

This report is addressing work carried out by GPLI in 2013 to develop a forecasting system for ML for up 

to 36 hours ahead. The report addresses data sources and classification methodology and describes in 

detail the following work: Development and implementation of Pattern Recognition (PR), Probabilistic 

Model (PM), and LAPS/WRF models; testing different versions of these models; and finally, selection of 

optimal combinations of models based on their performance vs. time horizon. 
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3. Data Sources 

This section describes sources of information used in classification, modeling and forecasting ML, 

(with hyperlinks to actual data where available). 

3.1. Geographic data 

Geographical information used in this project included a digital elevation model (DEM) for the area, as 

well as the vector data for coastline and SDGE service area boundary. The Digital Elevation Model was 

obtained from National Elevation Dataset, United States Geological Survey (USGS, Source: 

http://ned.usgs.gov/). The dataset comes in a resolution of 1/3 Arc Second (approximately 10x10m) and 

contains a total of 644 files with a total volume of 2.57 GB. Files corresponding to the area of interest 

were processed into 267 MB ArcGIS grids (ArcGRID) through following steps:   

• Zipped map sheet files were downloaded and un-compressed on local drive.  

• All map sheets were added to ArcGIS 9.3.1.  

US Medium Resolution Coastline (NOAA) was obtained from: 

 http://shoreline.noaa.gov/data/index.html as shapefile at spatial scale: 1:70,000 with original 

coverage for Continental United States.  
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3.2. Data sources for Live Classification  

The following data sources were used in ML forecasting: 

a) McIDAS  (Figure 1) 

b) SSEC Data Flow (Figure 2) 

c) NOAA FTP (Figure 3) 

 

Figure 1. Satellite data obtained through McIDAS. SDGE service area is shown in red. 
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Figure 2. Satellite data obtained through SSEC. 

 

 

Figure 3. GOES West data coverage. 
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3.3. Spatial Lookup table 

The forecast and analysis were carried on 1x1km grid encompassing San Diego County, see Figure 4 below. 

 

Figure 4. Forecast area with spatial lookup table overlaid. Forecast is provided for each 1x1km cell. 

 

3.4. Historical Data for PR and PM approaches 

The following data sources were used in the analysis of historical data used in the PR and PROB 

approaches. 

 

a) 2000-2010 SSEC provided (historical processing) 

b) 2011-2012- SSEC IR and NOAA VIS (historical processing) 

c) The historical data is currently being processed with updated classification methods 

 

 

 

3.5. Soundings Data Source 

All sounding data can be downloaded via the University of Wyoming’s atmospheric science website.  

 

3.6. Data for LAPS and WRF  

There are a variety of meteorological data that are ingested into the LAPS program to seed the WRF 

forecast model with the most up to date weather conditions.  
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For our purpose, we chose to use the North American Mesoscale (NAM) model which covers all of the 

continental US and has a forecast that extends up to 84 hours (Released every 6 hours).  

Our observational data comes primarily from the Meteorological Assimilation Data Ingest System 

(MADIS).  These data provide LAPS with the most recent observations which are then integrated into the 

model variables.  

3.7. Geographic masks used in forecast 

To avoid using misclassifications of ML in the arid inland areas we have used spatial masking to the results 

of classification which constrains the ML to the area where it is most likely. Initially the mask was drawn 

along the approximate 5% probability level for ML, and later it was substituted with a more accurate mask, 

see Figure 5 for details. 
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Figure 5. Spatial masks used in forecasting ML - original (top) and advanced (bottom). 
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4. Methods 

This section includes a brief description of the methodology used to classify live ML presence, to 

establish inversion parameters, to model and forecast ML and total cloud cover using LAPS/WRF, and to 

forecast ML using Pattern Recognition (PR) and Probabilistic Model (PM) approaches. 

4.1. Marine Layer Classification Methods 

 An automatic ML classification algorithm was implemented for near-real-time ML identification at every 

square kilometre of the total forecast area. The reclassification process of IR and VIS satellite images 

were used to detect marine layer along with high/low clouds. Figures 6-8 below outline the process. 

In Figure 6 we identify all cloud pixels in the image, as well as bare ground pixels. Figure 7 we cross 

Figure 6 with our ML mask from Figure 5 (above) to mask out clouds not contained within the ML 

boundary. Lastly, Figure 8, shows the final images used in the ML forecast.  

 

Figure 6 Classification of 2 classes (Cloud or bare ground) 
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Figure 7 Cross classification with 15% presence of yes/no 

 

 

Figure 8 Output to yes/no 
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4.2. Inversion Detection Algorithm 

Atmospheric sounding data that can be used for detecting temperature inversions typically come in a 

format resembling the following: 

Table 1. Example of sounding data. 

PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT 

hPa m C C % g/kg deg knot 

998 128 14.6 14.1 97 10.23 10 5 

995 154 15 14.6 97 10.6 11 4 

978 303 15 15 100 11.08 15 1 

977.8 305 15.1 15.1 100 11.12 15 1 

973 347 16 16 100 11.89 38 1 

…        

It is typically sampled at various air pressure levels, each with corresponding heights and other 

parameters (temperatures, wind speeds, etc.).  

Once the algorithm has finished running for a given set of sounding data, the altitude, temperature, wind 

speed, and wind direction are recorded at the heights identified as the base and top of the temperature 

inversion, see Figure 10 for two examples of inversion detection.  

 

 

Figure 9. Examples of automatic detection of inversion base and top from a simple (left) and more complex (right) temperature 

profiles. 
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4.3. Local Analysis and Prediction System / Weather Research and Forecasting 

Model Marine Layer and Total Cloud Forecasting Methods 

LAPS / WRF was set up to run on the San Diego County area for the purpose of marine layer detection. 

Our original WRF forecast utilized the Rapid Refresh (RAP) NWP to populate the model seed where 

observational data was not available. The RAP NWP is released once per hour and has a forecast window 

of 18 hours and a native resolution of 12 km.  

The original LAPS/WRF set up was a grid with a 3km exactly matching the forecast area (above). From the 

first forecast runs it was evident that boundary errors were appearing in the WRF forecasts along the 

border, occasionally reporting GHI value in excess of 1500 w/m2 or values systematically different from 

surrounding areas . The spatial boundaries were then extended to give a buffer of at least 10km 

surrounding the original area of interest on each side. The buffer zone ensured that no erroneous forecast 

values from boundary conditions were found in the final forecast area. Figure 10 below is an example of 

the extended forecast area. Note that the strip along the top and right hand sides displays these boundary 

errors.  

It was also found that unless the NEXRAD WSR-88D radar data were normalized to include nothing above 

200 decibels (dBZs), there were errors showing up in the cloudiness index and GHI variables in the LAPS 

analysis, see Figures 11,12 , and 13 respectively.  

Following the extension of the forecasts spatial extent and the radar upgrade, the forecast length was 

then increased from 18 hours up to the required 36 hours.  
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Figure 10. Example of the extended forecast area with boundary errors. Note the strip along 

the top and right-hand sides that report erroneous GHI values. By extending the forecast 

boundary, and clipping for the area of interest, the boundary condition errors do not affect the 

analysis.  

Figure 11. The LAPS analysed cloudiness index for the same region with non-normalized radar 
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4.4. Pattern Recognition Method 

The Pattern Recognition (PR) model uses historical patterns in the occurrence of the ML to forecast 

future ML events. This is done by taking the most recent classified ML and looking through a database of 

historical ML events (2000-present). To create a forecast, the PR stat is calculated for every ML event in 

the historical database with reference to the current ML to be forecast. This forecasting can, in theory, 

be applied to any desired time horizon, but the current model was only tested and optimized for a time 

horizon of 36 hours. 

Figure 12. The GHI values for the forecast area with non-normalized radar 

 

Figure 13. The LAPS analysed albedo values from the satellite images with non-normalized radar.  
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4.5. Probabilistic Model 

The probabilistic model (PM) uses the historical rates of the disappearance/reappearance of ML to 

forecast future ML based on the current classification. Using the historical dataset of ML events, a set of 

probability grids were developed that use a Markov chain based approach to determine the probability 

of the ML existing in each of the grid cells in future forecast periods. The resultant grids of probability 

values are then passed through a filter to turn them into binary ML present/absent grids. 

 
Figure 14. Performance of PM algorithm for clear sky  vs. ML conditions. 

 

As is readily apparent (Figure 14), the higher the Pcrit, the better the performance on absence and the 

worse the performance on presence. While this may make the case for a lower Pcrit, It has to be noted 

the ML is absent roughly 85% of the time, hence it would make sense to bias the model towards predicting 

absence. Figure 15 below, shows the error when the presence and absence are weighted equally (i.e. 

assuming they each occur 50% of the time) and weighted based on the weights of actual occurrence: 
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Figure 15. Performance of PM algorithm using two accuracy estimates. 
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5. Results – ML forecast Performance 

This section addresses performance of the developed system, with reference to different development 

stages and using several accuracy estimates. Please note that unless otherwise stated, all values are 

calculated using only daylight hours.  

The “Probabilistic” algorithm is the version using a 50% detection threshold, while the “New Probabilistic” 

method uses a 15% threshold. Unless otherwise noted, the analysis was done for the period of August 1, 

2013 to September 30, 2013. The entire 34750 point grid for the SDGE service area is not used in the 

analysis. Instead a study area consisting of 8049 points that lie in a band between 20 km offshore to 20 

km inland of the coast is used. For each set of forecasts, the forecasted marine layer from one to 36 hours 

out is compared to the classified values for the corresponding time. For example, for the classification 

created on August 31 at 12:00 PT, the hour-ahead forecast values made at 11:00 were compared to the 

12:00 classified values, the two-hour-ahead forecast values made at 10:00 were compared to the 12:00 

classification, and so on. All forecasts in the two-month period for all study area locations were binned for 

each forecast hour, and then the average agreement between forecast and classified was computed for 

each hour in the time horizon. Only daytime classified values are used in the calculations (daytime defined 

as 7am to 7pm PDT) though all applicable forecasted values were included. For the Persistence method 

the previous classified values were used instead of forecasted values.  

Two methods are used to compute the agreement between forecasted and classified values. The “actual” 

method uses no explicit weighting and is a simple average of the agreement at each forecast hour, and 

thus reflects the actual weather conditions present. The “equal” method is based on the formula used by 

UCSD:  

Agreement = [(# forecast clear & observed clear) / # observed clear + (# forecast cloudy & observed 

cloudy) / # observed cloudy] / 2. 

 

It should be noted that there is a bias built directly into the equal weighting method that skews the 

analysis in favour of cloudy days. Both clear and cloudy days are weighted equally here; where it is known 

in the San Diego area that marine layer is absent roughly 85% of the time. The charts below show the 

overall comparison between forecasts and classified values. 
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Figure 16. Overall agreement between classified values and forecasted values, averaged over the study area, by forecast 

hour. The top figure shows the fractional agreement using the “actual” agreement, as defined above, whereas the bottom 

figure shows the same using the “equal” agreement scheme noted above.  

 

In Figure 16, we present the fractional agreement between the classified ML points and their 

corresponding forecast points. The actual comparison methodology indicates the most effective method 

is the Probabilistic algorithm over almost all the entire 36-hour horizon. The equal comparison shows that 
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the Persistence method is best (though only slightly) for the first two hours, the New Probabilistic method 

is best for the next two hours, and after that the WRF model is generally the best performer.   

Figure 17, below, shows the performance of the algorithms depending on the actual presence or absence 

of marine layer (calculations were done separately for absence or presence as indicated by the 

classification). The Probabilistic method is very good at detecting absence, but poor in detecting presence. 

 

 
Figure 17. Performance of the algorithms for clear and cloudy cases. Performance is defined as the average agreement 

between the forecast and classified satellite image.  
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Figures 18 and 19 below show the algorithm that performed best for each of the locations in the study 

area for the indicated forecast hour. 

 

The “equal” method puts more emphasis on the presence of clouds, so it is important to consider its 

implications to the forecasts in the coastal zone. Consideration of the performance based on both 

methodologies was used to make a decision on the best mix of the forecasting algorithms overall. 

 
Figure 18. Best performing algorithm by location and forecast hour, actual weighting. See Figures 16 and 17 for colour 

references. 
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Figure 19. Figure: Best performing algorithm by location and forecast hour, equal weighting. 

Figure 20 tracks performance on a weekly basis. A week runs from a Monday to the following Sunday, and 

the dates on the x-axis denote the start of the week. Each point is the average agreement over the week 

over all points in the study area over the entire forecast time horizon.  

 

 
Figure 20. Weekly performance averaged over all points in the study area and over all forecast hours. Points are plotted at 

the start of the Monday-to-Sunday week. 
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The next set of charts, Figure 21, show the same type of analysis, but here comparisons are only done if 

marine layer is present or absent as indicated by the classified values. In addition, the additional orange 

curve in each chart shows the average fraction of the time that marine layer was absent or present, as 

determined by the classification. 

 

 

 
Figure 21. Weekly performance averaged over all points in the study area and over all forecast hours, when marine layer was 

absent and present. Points are plotted at the start of the Monday-to-Sunday week. 

Nighttime classification was implemented on September 11. Figure 22, 23, 24, and 25 below show the 

performance of the forecasts made at 7 and 9 PDT before and after the implementation date, respectively. 

The results generally seem better after the implementation of nighttime classification, the notable 

exception being the first hour of the 7 am forecasts where the algorithms performed more poorly after 

implementation. Interpretation is difficult because the marine layer situation itself will have differed 

between the two time periods (the figure above indicates a greater presence of marine layer in the latter 

period).  



 

 

Page 26 of 31 

 

 
Figure 22. Figure: Performance of forecasts made at 07 hours PDT from August 23 to September 10 (19-day period before 

nighttime classification was implemented) 

 

 
Figure 23. Performance of forecasts made at 07 hours PDT from September 12 to 30 (19-day period after nighttime 

classification was implemented).  

For 7am forecast introduction of nighttime classification resulted in a better performance of persistence 

for the night hours, current forecast day as well as for the next mid day. PM approach also performed 

better at evening time. 
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Figure 24. Performance of forecasts made at 09 hours PDT from August 23 to September 10 (19-day period before nighttime 

classification was implemented). 

 

 
Figure 25. Performance of forecasts made at 09 hours PDT from September 12 to 30 (19-day period after nighttime 

classification was implemented). 

For 9 am forecasts and later the introduction of night ML classification improved both PM and WRF 

based forecasts. 
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Table 2 below compares the classified values to observed cloudiness values obtained from 12 METAR 

stations (Figure 26). Marine layer was defined as the presence of fog, mist, or broken or overcast clouds 

with heights less than 1500 feet. Classified values from the grid points closest to the weather stations 

were used. Note that the last two stations (KSEE and KRNM) are outside the coastal-band study area. 

 

Table 2. Agreement between classified and observed marine layer for 12 weather stations for the period May 20 to 

September 30, between the hours of 7am and 7pm PDT. 

METAR Station Distance from Coast (km) Agreement (Actual) Agreement (Equal) 

KNXF 0.2 72.4% 66.7% 

KNZY 0.2 75.5% 71.0% 

KSAN 0.7 75.3% 69.4% 

KNRS 1.9 73.5% 69.1% 

KOKB 4.3 73.7% 67.5% 

KCRQ 5.3 71.7% 67.0% 

KNFG 9.6 76.8% 71.6% 

KNKX 10.2 79.6% 72.2% 

KMYF 10.2 79.6% 71.9% 

KSDM 10.4 76.5% 67.2% 

KSEE 22.0 78.0% 67.8% 

KRNM 33.7 82.0% 63.1% 

 

 

 

 
Figure 26. Locations of METAR stations used to compare observations with classified values 
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Figure 27. Agreement for Actual and Equal scheme as a function of distance from coast. It can be seen that the actual scheme 

forecasts best inland, but is always outperforming the forecasts using the equal scheme,  

 

The results of testing forecasts vs METAR observations are very similar in magnitude to the comparison 

of marine layer forecasts to the classified grids with forecast accuracy of 60 – 80 %.Figure 27 shows the 

information from Table 2 visualized. It can be seen that for the actual agreement values, there is a trend 

seen where the forecasts are better as you go further inland. For the equal weighting scheme the values 

are relatively flat.  
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6. Conclusions  

 

A number of approaches were tested in developing ML forecasts for 36 hours ahead. They performed 

with different accuracy depending on the geographic location, time of day, and forecast horizon. As a 

result a combination of Probabilistic and WRF approach were adopted as best suited for marine layer 

forecasting in the San Diego County area. 

The best (currently) mix of models is the use of probabilistic forecast for the current day (7 am – 

7 pm) and the use of LAPS/WRF for hours beyond that. Depending on the critical value of 

probabilistic threshold PM approach captures well attenuation of ML through the day. In the current 

configuration LAPS/WRF is capable of developing future cloud fields while being relatively weak in 

capturing them within the short time horizon.  

 Although the persistence model appears to do well on the equal weighting scheme, when one looks 

at the actually occurrence of ML, that is not the case. The reason that persistence does well on the 

equal weighting scheme is based on the nature of the weighting scheme itself, putting much more 

emphasis on clouds being present. As discussed above, in general, ML is not present a large majority 

of the time, thus the equal weighting scheme is heavily biased. Persistence also performs well in the 

hour ahead diagnostics for several reasons. Compared to WRF, this is due to the fact that numerical 

models need several hours of spin up time to ensure that clouds are well established and for 

probabilistic (50%), the ML retreats faster than it occurs naturally. Persistence compared to 

probabilistic (15%), it can be seen that persistence is not outperforming in the first few hours 

(Figures 24 25). The above speaks to the need to combine different forecasting techniques to ensure 

the best possible, accurate, forecast is delivered.  

Testing ML forecasts operationally is a challenge because of the seasonal variability in ML presence. 

Despite these constraints we have had several months of continuous testing in the summer 2013. 

The results of our work are encouraging with overall agreement of forecasts with observations of 60 

to 80% (as in number of 1km cells in the service area where ML is forecasted correctly).  

It is expected that LAPS/WRF, with implemented improvements, will become a source of GHI forecast 

for SSD. Therefore real time ML classification results will have to be integrated into LAPS/WRF “on 

the fly” to improve short time horizon forecast accuracy. Testing should be carried on integration of 

ML forecast with the existing SSD software as well.  
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It is important to carry on further development of forecasting techniques to improve accuracy by 

adjusting classification techniques, introducing real time forecast validation, improving PM, PR and 

LAPS/WRF models. 

 

 


