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Preface 
The goal of the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) 
Program is to foster a sustainable and self-supporting customer-sited solar market. To achieve this, the California 
Legislature authorized the California Public Utilities Commission (CPUC) to allocate $50 million of the CSI budget 
to an RD&D program. Strategically, the RD&D program seeks to leverage cost-sharing funds from other state, 

federal and private research entities, and targets activities across these four stages: 

 Grid integration, storage, and metering: 50-65% 

 Production technologies: 10-25% 

 Business development and deployment: 10-20% 

 Integration of energy efficiency, demand response, and storage with photovoltaics (PV) 

There are seven key principles that guide the CSI RD&D Program: 

1. Improve the economics of solar technologies by reducing technology costs and increasing 
system performance; 

2. Focus on issues that directly benefit California, and that may not be funded by others; 

3. Fill knowledge gaps to enable successful, wide-scale deployment of solar distributed 
generation technologies; 

4. Overcome significant barriers to technology adoption; 

5. Take advantage of California’s wealth of data from past, current, and future installations to 
fulfill the above; 

6. Provide bridge funding to help promising solar technologies transition from a pre-commercial 
state to full commercial viability; and 

7. Support efforts to address the integration of distributed solar power into the grid in order to 
maximize its value to California ratepayers. 

 

For more information about the CSI RD&D Program, please visit the program web site at 
www.calsolarresearch.ca.gov. 

 

http://www.energy.ca.gov/pier/
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Abstract 

The California Solar Initiative (CSI) has a goal of installing 3,000 MW of new solar electricity by 2016. CSI 

has identified that one potential barrier to accomplishing this goal is planning and modeling for high-

penetration PV grid integration issues. A team led by Clean Power Research (CPR) received approval 

from the California Public Utilities (CPUC) for a grant titled, “Integrating PV into Utility Planning and 

Operation Tools.” CPR led the team in the development, validation, and integration of PV fleet 

simulation tools that enable utilities and ISOs to cost-effectively integrate distributed PV resources into 

their planning, scheduling and operating strategies.  

This project builds upon Clean Power Research’s CSI Grant Solicitation #1 award, which was awarded in 

2010 and titled, “Advanced Modeling and Verification for High Penetration PV.” Two key 

accomplishments under that award were: production of a publicly-available enhanced resolution solar 

resource database for every location in California (SolarAnywhere® Enhanced Resolution, 1-km, 30-

minute resolution, available at www.SolarAnywhere.com); and development of an advanced 

methodology to simulate PV fleet power production for any PV fleet configuration (SolarAnywhere 

FleetView). 

This current project accomplishes the following grid-integration tasks: 

1. Extend the SolarAnywhere Enhanced Resolution solar resource database, create high resolution 

(1-km, 1-minute resolution) solar resource data, and benchmark data accuracy. 

2. Validate previously developed PV fleet simulation methodologies using measured ground data 

from fleets of PV systems connected to California’s grid. 

3. Integrate PV fleet simulation methodologies into utility software tools for use in activities 

ranging from distribution planning to balancing area operations using CAISO as a test case.  

The tools and data streams developed as part of this work will be made available using CPR’s existing 

software services (e.g., www.SolarAnywhere.com) to California utilities, ISOs and others to help cost-

effectively and reliably integrate distributed PV into the grid. 

 

 

 

  

http://www.solaranywhere.com/
http://www.solaranywhere.com/
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Executive Summary 

Introduction 

The California Solar Initiative (CSI) has a goal of installing 3,000 MW of new solar electricity by 2016. CSI 

has identified that one potential barrier to accomplishing this goal is planning and modeling for high-

penetration PV grid integration issues. A team led by Clean Power Research (CPR) received funding from 

the California Public Utilities Commission (CPUC) titled, “Integrating PV into Utility Planning and 

Operation Tools.” The team included the California Independent System Operator (CAISO), Sacramento 

Municipal Utility District (SMUD), Pacific Gas and Electric Company (PG&E), State University of New York 

(SUNY), Solar Electric Power Association (SEPA), UC San Diego (UCSD), and Electric Power Research 

Institute (EPRI). CPR led the team in the development, validation, and integration of PV fleet simulation 

tools that enable utilities and ISOs to cost-effectively integrate distributed PV resources into their 

planning, scheduling and operating strategies.  

Project Objectives 

This project builds upon CPR’s CSI Grant Solicitation #1 award, which was granted in 2010 and titled, 

“Advanced Modeling and Verification for High Penetration PV.” Two key accomplishments under that 

award were: production of a publicly-available enhanced resolution solar resource database for every 

location in California (SolarAnywhere® Enhanced Resolution, 1-km, 30-minute resolution, available at 

www.SolarAnywhere.com); and development of an advanced methodology to simulate PV fleet power 

production for any PV fleet configuration (SolarAnywhere FleetView). 

This current project accomplishes the following grid-integration tasks:1 

1. Extend the SolarAnywhere Enhanced Resolution solar resource database, create high resolution 

(1-km, 1-minute resolution) solar resource data, and benchmark data accuracy. 

2. Validate previously developed PV fleet simulation methodologies using measured ground data 

from fleets of PV systems connected to California’s grid. 

3. Integrate PV fleet simulation methodologies into utility software tools for use in activities 

ranging from distribution planning to balancing area operation using CAISO as a test case. 

Results 

Task 1: SolarAnywhere Data 

The first task was to extend the SolarAnywhere Enhanced Resolution solar resource database (1-km, 30-

minute resolution), to create high resolution (1-km, 1-minute resolution) data, and to benchmark data 

accuracy. 

                                                           
1
 The Grant Agreement lists four tasks with Task 1 being “Project Management.” This report does not include the 

Project Management task. As such, all tasks are shifted back by one for this report. For example, Task 2 in the 
Grant Agreement corresponds to Task 1 in this report. 

http://www.solaranywhere.com/
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CPR continued to update the SolarAnywhere Enhanced Resolution data throughout the project. The 

data is publicly available at www.solaranywhere.com.  

The updated SolarAnywhere Enhanced Resolution data was then used as an input to create the 

SolarAnywhere High Resolution (1-km, 1-minute) solar resource data. This was accomplished by applying 

the Cloud Motion Vector (CMV) approach developed by Dr. Richard Perez. The CMV approach projects 

cloud movement by comparing two consecutive enhanced resolution images. The result produces high 

temporal resolution (1-minute) data that is then used to create the SolarAnywhere High Resolution solar 

resource data. 

It was challenging to produce such state-of-the-art data. It was even more challenging to produce the 

data at a speed fast enough to make it available for PV fleet forecasting for several hundred thousand 

individual PV systems every 30 minutes. CPR had to move its code base from running on servers in a 

local datacenter to a “massively parallel” architecture using Internet “cloud” computing. CPR performed 

this transition over a multi-month period that included designing, porting, testing, and running the 

system. The cloud computing approach allows CPR to flexibly and efficiently add additional compute 

power as the number of PV systems grows or as simulation time horizons are adjusted. By the end of the 

process, CPR was able to produce solar forecasts that could be used to forecast production for 170,000 

PV systems (current number of systems as of the writing of this report) every 30 minutes. The system 

has been operating well for almost one year. 

The accuracy of the SolarAnywhere data was validated in conjunction with a CEC project, titled, 

“Demonstration and Validation of PV Output Variability Modeling,” Project number CEC 500-10-059 (see 

Appendix 1).  Results indicated that the SolarAnywhere High Resolution data is more accurate than 

SolarAnywhere Enhanced Resolution data which, in turn, is more accurate than SolarAnywhere Standard 

Resolution data. 

Task 2: Validate PV Fleet Simulation 

The second task was to validate PV fleet simulation methodologies using measured ground data from 

fleets of PV systems connected to California’s grid. This task was accomplished using measured PV 

production data for fleets of systems from two separate sources. CAISO provided data for large PV 

plants connected to its system. SMUD provided data for small distributed PV systems connected to its 

system.  

CAISO provided measured fifteen-minute production data for 46 metered PV plants from March 10, 

2013 to April 19, 2013. Results suggest that the relative mean absolute error (rMAE) ranged from 3 to 7 

percent depending upon the level of model tuning and data filtering. SMUD provided measured hourly 

production data for 2,206 distributed PV systems from April 16, 2012 to October 10, 2012. SMUD also 

provided specifications for all of the PV systems. Model tuning was not applied to this data set. Results 

indicate an accuracy of 6 percent rMAE. The overall conclusion was that SolarAnywhere’s PV fleet 

simulation capabilities result in fairly accurate results. 

http://www.solaranywhere.com/
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Task 3: Integrate PV Fleet Simulation into Utility Software Tools 

The third task was to integrate PV fleet simulation methodologies into utility software tools using the 

results from Tasks 1 and 2. 

A fleet of PV systems can be defined very broadly. At one extreme, a fleet can refer to single PV system 

on the roof of one person’s house. At the other extreme, a fleet can refer to all PV systems located 

within a balancing area across a state or even all PV systems in the U.S. or the world. User-defined 

collections of systems (“virtual” fleets) based on location, system attributes or other criteria are useful 

for planning and modeling purposes. 

PV fleet simulations can be based on historical, real-time, or forecasted solar resource data. Historical 

data is useful for system planning. Real-time data is useful for assessing PV fleet operation. Forecasted 

data is useful for determining how to operate the rest of the utility system. 

This broad definition of a PV fleet makes the simulation capabilities useful across a wide spectrum of 

utility applications. These applications range from planning and smart grid operation in the distribution 

system, utility load scheduling in the utility system, and balancing area planning and operation functions 

covering multiple utilities. 

CAISO is responsible to maintain reliability and accessibility for California’s utility grid. As such, they are 

concerned with the effect of power production from customer-owned PV systems on the balancing area. 

CAISO clearly understood the performance of the large PV systems through detailed production 

monitoring. They had no visibility, however, into the performance of the behind-the-meter PV systems. 

This was a concern to them. They needed to forecast behind-the-meter PV fleet performance. 

It was initially planned to demonstrated limited PV fleet simulations across the variety of possible 

applications. Instead, it was determined that the greatest market need was the most complex 

application originally anticipated: behind-the-meter PV fleet forecasting for an entire balancing area. 

Furthermore, it was clear that what was needed was a full-scale application, not a limited scope test. As 

a result, CPR designed, tested, and implemented a PV fleet forecasting system that included all 

distributed PV systems in the state of California. 

The three critical elements in performing a PV fleet simulation include: high resolution solar resource 

data, PV system specifications, and a simulation model to convert this information into production. The 

solar resource data was developed in Task 1. Detailed specifications for all PV systems in California were 

collected as part of a partner CEC project. The fleet simulation model was validated in Task 2. The result 

is that CPR began generating high resolution forecasts every 30 minutes for the entire state based on 

detailed PV system specifications for all behind-the-meter and metered PV systems. At the time of this 

report, there were 170,000 PV systems.  The result is the capability of forecasting PV fleet output for the 

entire state of California as illustrated in the following figure.  
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Figure 1. California solar resource portfolio (Feb. 18, 2014). 

  

 

 

Key Findings 

This project built on the results produced under CSI RD&D Program Solicitation #1 for the CPR proposal 

entitled “Advanced Modeling and Verification for High Penetration PV.” Key conclusions from this work 

are: 

 High resolution solar resource data can be accurately produced. 

 This solar resource data can be combined with PV system specifications to accurately simulate 

PV fleet production. 

 The simulation process can be performed quickly enough to support even the challenging 

application of forecasting production for hundreds of thousands of systems while meeting 

forecasting time horizon requirements using the appropriate computing resources and 

underlying system architecture. 

Benefits to California Ratepayers 

This project has provided a number of benefits to the state of California. 

Solar Resource Data 

The first task was to extend SolarAnywhere. SolarAnywhere Enhanced Resolution provides 1 km spatial 

resolution with half-hour temporal resolution irradiance data. It is beneficial in that it is comprehensive 

for all of California and is freely available at www.SolarAnywhere.com. California project developers are 

also leveraging the increased Enhanced Resolution data accuracy to obtain lower financing rates 

because of reduced project risk; this lowers the cost of solar and increases the penetration of PV in the 

http://www.solaranywhere.com/
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state. SolarAnywhere High Resolution extends the Enhanced Resolution to one-minute temporal 

resolution. The High Resolution data is used in PV penetration and variability studies. 

PV Fleet Simulation Validation 

The second task was to validate PV fleet simulation methodologies using measured ground data from 

fleets of PV systems connected to California’s grid. It is critical to the utilities and balancing area 

authorities responsible to run the grid that they validate models using real-world data. The validation 

provides public benefits because grid operators need to gain confidence in the models intended to 

inform grid operation prior to their use. 

PV Fleet Simulation Integration into Utility Software Tools 

The third task was to integrate PV fleet simulation methodologies into utility software tools. CAISO has 

the responsibility of maintaining reliability and accessibility for California’s utility grid. As such, they are 

concerned with the effect of power production from customer-owned PV systems on the balancing area. 

Prior to this contract, CAISO did not have visibility into the performance of behind-the-meter PV 

systems. CPR has been providing behind-the-meter PV fleet forecasts every 30 minutes to CAISO for one 

year. This is beneficial to California in that CAISO has visibility into behind-the-meter PV performance 

when none existed prior to this grant. It has the additional benefit of being a valuable case study for 

California’s IOUs as they consider using the same approach for their needs.  
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1. Introduction 
The California Solar Initiative (CSI) has a goal of installing 3,000 MW of new solar electricity by 2016. CSI 

has identified that one potential barrier to accomplishing this goal is planning and modeling for high-

penetration PV grid integration issues. A team led by Clean Power Research (CPR) received approval 

from the California Public Utilities (CPUC) for a grant titled, “Integrating PV into Utility Planning and 

Operation Tools.”  

CPR assembled a team that included the California Independent System Operator (CAISO), Sacramento 

Municipal Utility District (SMUD), Pacific Gas and Electric Company (PG&E), State University of New York 

(SUNY), Solar Electric Power Association (SEPA), UC San Diego (UCSD), and Electric Power Research 

Institute (EPRI). CPR led the team in the development, validation, and integration of PV fleet simulation 

tools that enable utilities and ISOs to cost-effectively integrate distributed PV resources into their 

planning, scheduling and operating strategies. 

This project builds upon CPR’s CSI Grant Solicitation #1 award, which was granted in 2010 and titled, 

“Advanced Modeling and Verification for High Penetration PV.” Two key accomplishments under that 

award were: production of a publicly-available enhanced resolution solar resource database for every 

location in California (SolarAnywhere® Enhanced Resolution, 1 km, half-hour resolution, available at 

www.SolarAnywhere.com); and development of an advanced methodology to simulate PV fleet power 

production for any PV fleet configuration (SolarAnywhere FleetView). 

This current project will accomplish the following grid-integration tasks: 

1. Extend the SolarAnywhere Enhanced Resolution solar resource database to create high 

resolution (1-km, 1-minute resolution) data and benchmark data accuracy. 

2. Validate previously developed PV fleet simulation methodologies using measured ground data 

from fleets of PV systems connected to California’s grid. 

3. Integrate PV fleet simulation methodologies into utility software tools for use in activities 

ranging from distribution planning to balancing area operation using CAISO as a test case. 

The tools and data streams developed as part of this work will be made available to California utilities, 

ISOs and others to help cost-effectively and reliably integrate distributed PV into the grid. 

  

http://www.solaranywhere.com/
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2. Task 1: SolarAnywhere Data 
The first task was to extend the SolarAnywhere Enhanced Resolution solar resource database, to create 

high resolution (1-km, 1-minute resolution) data, and to benchmark data accuracy.  

2.1. Introduction 
SolarAnywhere is a subscription-based, online satellite-based irradiance dataset 

(www.SolarAnywhere.com) currently available from Mexico to Canada. Prior to CPR’s CSI Phase 1 grant, 

it contained hourly irradiance data at a 10-km by 10-km spatial resolution and 1-hour temporal 

resolution dating back from 1998. The functionality of SolarAnywhere was extended in three ways under 

CPR’s CSI Phase 1 grant: (1) finer spatial resolution (1-km by 1-km grid); (2) finer temporal resolution 

(30-minute interval); and (3) freely available to users throughout California for the term of the project. 

The resulting product was referred to as SolarAnywhere Enhanced Resolution.  

The objective of this task was to continue to provide SolarAnywhere Enhanced Resolution data for the 

duration of this contract, to extend the data to include SolarAnywhere High Resolution data (1-km by 1-

km grid, 1-minute interval), and to benchmark data accuracy. 

2.2. SolarAnywhere Enhanced Resolution 
Production of the SolarAnywhere Enhanced Resolution data (1-km spatial resolution, 30-minute 

temporal resolution) began under CPR’s CSI Phase 1 contract. Production was continued in order to 

keep it up-to-date and accessible. 

The data has been used in multiple ways: 

 The data is publicly available through the www.solaranywhere.com website (see Figure 2). 

 High Resolution data uses Enhanced Resolution data as a core input. 

 The data was used in some of the other tasks for this current project as they relate to tools and 

reports. 

 Others have used the data for CPUC studies. For example, CPUC’s subcontractor E3 used the 

data to perform a detailed net metering analysis for the California IOUs. CPR provided E3 with 

half-hour solar irradiance data for every PV system in the state of California for their analysis. 

 

http://www.solaranywhere.com/
http://www.solaranywhere.com/
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Figure 2. SolarAnywhere public data access. 

 

 

Several activities were associated with continued production of the data. First, there was the daily 

activity of ensuring that the system operated correctly; operational issues were addressed immediately 

when they occurred. Second, there was the monthly activity of ensuring that end-of-month processing 

operated correctly. Third, there was the activity of speeding up data processing. In particular, end-of-

month processing required a two-day process at the beginning of this project. This caused significant 

server performance problems and made it slow for any users to access the data. End-of-month server 

performance issues were eliminated as part of this project. 

2.3. SolarAnywhere High Resolution 
SolarAnywhere Enhanced Resolution data has a 1-km spatial resolution and 30-minute temporal 

resolution. Utility applications, however, require higher temporal resolution data. This project launched 

the first application of SolarAnywhere High Resolution data. This data set has 1-km spatial resolution 

and 1-minute temporal resolution. This data needed to be available on demand to generate the PV time 

series data for use in the validation and PV fleet forecasting described in the subsequent sections. 

Two issues were addressed as part of this subtask. The first issue was to produce the high resolution 

data. The second issue was to produce the data at a speed fast enough to make it available for PV fleet 

forecasting for several hundred thousand individual PV systems every 30 minutes. 

The first issue was to produce the data. The data is created using the enhanced resolution data as input 

and then applying a specially-designed Cloud Motion Vector (CMV) approach. Two consecutive 

enhanced resolution images are compared and the CMV approach is used to project the movement of 

the clouds based on a comparison of the two images. This produces a series of new enhanced resolution 

images. The 1-minute temporal resolution data was obtained from these images. This approach has 
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been under development by Dr. Richard Perez for several years. It was further refined as part of this 

project. 

The second issue was to produce the data quickly. While it was challenging to produce the 1-km, 1-

minute data for the entire state of California, it was an even greater challenge to produce the data fast 

enough to work for forecasting behind-the-meter PV production for the entire state. In particular, new 

data needed to be produced for every location in California every half hour in order to update the 

forecast.  This was an issue that had not been addressed in any previous projects.  

The challenge of rapidly producing such a large volume of data required CPR to reevaluate how the solar 

resource data was produced. CPR ultimately decided to move its entire code base from running on 

servers in a local datacenter to a massively parallel architecture using Internet “cloud” computing. This 

enabled CPR to match the need for computing resources to the available supply without continually 

purchasing (and thus maintaining) new servers. 

CPR performed this transition over a multi-month period. This included designing, porting, testing, and 

running the system. By the end of the process, CPR was able to produce solar forecasts that could be 

used to simulate the 10-day forecast of the output from 170,000 PV systems with 30-minute 

observations in less than 30 minutes. The system has been operating well for almost a year.   

2.4. SolarAnywhere Validation 
The final subtask was to validate the accuracy of the SolarAnywhere data. This subtask was performed in 

conjunction with a CEC project, titled, “Demonstration and Validation of PV Output Variability 

Modeling,” Project number CEC 500-10-059. This CEC report is attached as Appendix 1. 

2.4.1. Definitions 
It is important to clearly define what is meant by accuracy before discussing solar resource data 

accuracy. Accuracy validation often means different things to different people. As such, it is useful to 

begin with a definition of how accuracy quantification can be performed. 

Three fundamental questions need to be answered to provide a clear definition of how accuracy 

quantification is performed. 

1. What is the data source? 
2. What are the time attributes? 

2.4.2. Data Source 
The first step is to identify the data that is being evaluated. Options include irradiance data or simulated 

PV power production using irradiance data and other parameters. In addition, the analysis can be 

performed for individual locations or fleets (i.e., multiple locations). In this section, the focus is on 

irradiance. 

2.4.3. Time Attributes 
The second step is to specify the required time attributes. These include: 
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 Time period: total amount of data included in the analysis. This can range from a few minutes to 
many years. 

 Time interval: how the data in the time period is binned. This can range from a few seconds to 
annually. For example, if the time period is one year and the time interval is one hour, the time 
period would be binned into 8,760 time increments.  

 Time perspective: when the predicted observation is reported. This can range from historical 
(backward looking) to forecasted a few hours ahead to forecasted multiple days ahead (forward 
looking). 

2.4.4. Evaluation Metric 
The third step is to select the evaluation metric. Error quantification metrics used in assessing absolute 

irradiance model accuracy such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) have 

been precisely defined. Their relative counterpart (results expressed in percent), however, can be 

subject to interpretation and may cover a wide range of values for a given set of data depending on 

reporting practice.  

MAE relative to available energy (rMAE) is a good method to measure relative dispersion error. This is 

the method used in the present analysis. The MAE relative to the average energy available is calculated 

by summing the absolute error for each time interval over the time period, and then dividing by the 

total available energy. 

 

                              
∑ |  

       
   
| 

   

∑   
    

   

 ( 1 ) 

 

where   
     is the test irradiance at time t,   

   
 is the reference irradiance at time t, and N is the number 

of time intervals. 

It is useful to provide a hypothetical example of how to calculate the rMAE. A short time period (one 

day) is selected in order to graphically illustrate the calculations; the actual calculations in this paper use 

a one year time period.  

As presented in Figure 3, the process is follows: 

 Select time period: 1 day. 

 Select time interval: 1 hour. 

 Calculate absolute error for each hour and sum the result as described in the top part of 
Equation ( 1 ): 1.6 kWh/m2/day. 

 Calculate available energy for each hour from reference data and sum the result as described in 
the bottom part of Equation ( 1 ): 4.5 kWh/m2/day. 

 Calculate Relative Mean Absolute Error: 36% (i.e., 1.6/4.5). 
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Figure 3. Mean absolute error relative to available energy calculation example. 

 

 

It is important to note that a more often reported measurement of error is MAE relative to generating 

capacity. In the above example, however, it is unclear over what time period the generating capacity 

should be selected. Should it be capacity during daylight hours or capacity over the entire day, including 

night time hours? MAE relative to daytime capacity is about 13.3% (i.e., 1.6/12) while Mean Absolute 

Error relative to full day capacity is about 6.6% (i.e., 1.6/24). 

It is due to this sort of ambiguity, as well as the fact that MAE relative to energy is a much more 

stringent metric (e.g., in this example, MAE relative to energy is 6 times higher than MAE relative to 

daily generation capacity), that the MAE relative to energy (rMAE) is selected as the evaluation metric. 

2.4.5. Locations Selected for Validation 
This metric can be used to quantify irradiance data accuracy for a one-year time period (2011) with time 

intervals ranging from one-minute to one-year using a historical time perspective. The analysis was 

performed for both individual locations and the ensemble of those locations. 

Ten of the 46 metered locations were randomly selected for validation purposes. In order to perform 

the detailed analysis, each location had to have two global horizontal insolation (GHI) monitoring 

devices available on site and have one year’s (2011) worth of data available. There were six locations 

that passed this initial screening. 

A total of six test locations were analyzed where PV systems are located within the CAISO control area. 

The locations are identified as locations A through F. Each location is equipped with two redundant 

global horizontal irradiance (GHI) sensors. One of the sensors was used as a reference and compared to 

four test configurations: the second ground sensor, and three satellite-derived sources (SolarAnywhere 

Standard, Enhanced, and High Resolution data sets). 
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The validation approach involved the following steps: 

 Obtain time-series GHI data for 2011 for six locations: 
o 4-second data averaged into 1-minute time intervals from two separate sensors at each 

location. 
o Satellite based data at the following SolarAnywhere resolutions: 

 1 minute, 1 km grid (High Resolution). 
 ½ hour, 1 km grid (Enhanced Resolution). 
 1 hour, 10 km grid (Standard Resolution) 

 Time-synchronize data sets by converting ground sensor data from Pacific Daylight Time to 
Pacific Standard Time. 

 Evaluate all observations for data quality; exclude data where any one of the data sources has 
data quality issues. 

 Calculate rMAE using the ground sensor that minimizes SolarAnywhere error as a reference. 

 Calculate rMAE using the other ground sensor as a reference. 

 Repeat the analysis for fleets of locations. 

2.4.6. Obtain Time Series Data 
CPR extended SolarAnywhere Standard Resolution (10 km spatial/1 hour temporal resolution) to 

SolarAnywhere Enhanced Resolution (1 km spatial/ 30 minute temporal resolution) under a previous 

contract.2 Figure 4 illustrates the increase in resolution for San Francisco, CA. 

Figure 4. SolarAnywhere Standard and Enhanced Resolution  

 

(San Francisco, CA) 

A critical part of project was to extend SolarAnywhere Enhanced Resolution to SolarAnywhere High 

Resolution (1 km spatial/ 1 minute temporal resolution). The data was generated for all selected 

locations. Figure 5 presents a sample of the data for one day (July 4, 2011) at one location (CAISO Site 

A). 

 

                                                           
2
 California Solar Initiative Solicitation #1 Grant Agreement, “Advanced Modeling and Verification for High 

Penetration PV”. 



17 
 

Figure 5. Time series data for all data sources on July 4, 2011 at CAISO Site A. 

 

 

2.4.7. Evaluate All Observations for Data Quality 
As mentioned above, one of the steps in the analysis was to evaluate all observations for data quality. 

When evaluating accuracy, it is often simply assumed that reference data is correct. This assumption is 

made due to the difficulty in determining whether or not the reference data is correct: to what can the 

reference data be compared? 

A unique aspect of the data provided by the CAISO is that all the locations have two ground sensors. As a 

result, since either sensor could be the reference, the data quality of the ground sensors was assessed 

by comparing the two ground data sets.  

This was the process used to assess data quality: 

(1) Compare the two sets of ground sensor data to each other to determine when one value is 
substantially different than the other value. 

(2) Compare the enhanced resolution satellite and ground sensor data to search for 0 values 
occurring at incorrect times (e.g., mid-day on otherwise clear day) to determine when the 
satellite data is invalid. 

(3) Compare ground sensor data to the SolarAnywhere Enhanced Res. data to determine if both 
ground observations are the same but are obviously incorrect (e.g., the irradiance value remains 
at a constant level for many hours).  

The complete data set was evaluated and then potential outliers were manually evaluated and screened 

for each of these steps. Figure 6 illustrates the screening result when comparing the two ground sensors 

at one location. All of the data points would lie on the 45 degree red line if they were identical. The blue 

symbols correspond to valid data and the black symbols correspond to invalid data. Figure 7 illustrates 

the issue for one of the invalid observations when one of the sensor’s recorded values remained 

constant after solar noon. Figure 8 illustrates the case when both ground sensors produced a similar 
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value but were obviously incorrect, reading a constant low value on an otherwise clear day as assessed 

from the satellite data. Figure 9 illustrates the case when there was a night-time calibration error across 

the year. Site E was missing more than a month of data during the first part of the year as well as a five 

percent difference between the two ground sensors.  

Sites E and F were eliminated from the analysis as a result of the data filtering process. The remaining 

sites had about one percent of the ground data marked as invalid. 

 

Figure 6. Half-hour energy production in 2011 from meter 2 vs. meter 1 (Site A). 

 

 

Figure 7. Example of when only one of the ground sensors has invalid data. 

 
(Site A, June 22, 2011) 
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Figure 8. Example of when both ground sensors have invalid data. 

 

(Site C, May 1-2, 2011) 

Figure 9. Site F has a night-time calibration error across the year. 

 

 

2.4.8. Results 
rMAE was calculated for three scenarios: 

 Each location individually. 

 Average of individual locations. 

 Fleet of locations. 
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Figure 10 presents the rMAE for each of the four locations using time intervals ranging from 1 minute to 

1 year. 

Figure 10.  Relative MAE for each location individually. 

 

 

Figure 11 presents the average rMAE of four individual locations. The black line summarizes the error 

when two ground stations were used (one was the reference and the other was the test). The green, 

blue, and red regions summarize the error when SolarAnywhere High, Standard, and Enhanced 

Resolution were compared to the ground sensor. The green, blue, and red areas are regions rather than 

lines because they compare satellite data to ground data using the two different ground sensors: the top 

of the region is the comparison using the ground sensor that maximizes error; the bottom of the region 

is the comparison using the ground sensor that minimizes error. 

There are several important things to notice in the figure. First, as expected, error decreases for all data 

sources as the time interval increases. Second, accuracy improves for each of the three satellite models 

as the spatial and temporal resolutions are increased. Third, error exists even between two ground 

sensors that are in almost the same location (i.e., ground sensors have 1 percent annual error). Fourth, 

SolarAnywhere High Resolution has only 10 percent error over a one minute time interval, 7 percent 

error over a one hour time interval, and 2 to 3 percent error on a one year time interval. 
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Figure 11. Average MAE of 4 individual locations. 

 

 

A consistent finding of many PV variability studies is that variability is reduced when PV systems are 

geographically dispersed. That is, variability is reduced as the number of systems increases across a 

sufficiently large geographic region. 

So far, this section has focused on the error associated with individual locations. While individual 

locations are of interest in some cases, there are certainly many other cases in the utility industry when 

users are most interested in the error associated with a set of locations. 

The rMAE analysis was repeated with the input data being the combined irradiance across four 

locations. The results are presented in Figure 12. A clear reduction in error due to combining locations 

can be seen by comparing Figure 12 to Figure 11. That is, the effect of geographic dispersion on reducing 

output variability reduction that has been observed by others is now also observed with regard to 

prediction accuracy: accuracy improves as a geographically diverse set of independent locations are 

combined. 
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Figure 12. MAE of 4 locations combined. 

 

 

2.5. Conclusions 
This task provided SolarAnywhere data and benchmarked data accuracy. The SolarAnywhere data 

included both Enhanced Resolution and High Resolution data. Enhanced Resolution is 1 km spatial 

resolution and half-hour temporal resolution while High Resolution is 1 km spatial resolution and 1 

minute temporal resolution. Both versions were successfully developed and delivered over the term of 

the grant. Benchmarking results indicated that High Resolution data had about 7 percent rMAE on an 

hourly basis for a single location. Similar results were obtained for data provided for SMUD’s extensive 

solar resource monitoring network.3 

  

                                                           

3 “Solar Monitoring, Forecasting, and Variability Assessment at SMUD.” Presented at WREF 2012 (SOLAR 
2012). Denver, CO, May 2012. Paper available at. http://www.cleanpower.com/wp-
content/uploads/SMUD-Solar-Assessment_2012.pdf. 
 

http://www.cleanpower.com/wp-content/uploads/SMUD-Solar-Assessment_2012.pdf
http://www.cleanpower.com/wp-content/uploads/SMUD-Solar-Assessment_2012.pdf
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3. Task 2: Validate PV Fleet Simulation 

3.1. Introduction 
The second task was to validate PV fleet simulation methodologies using measured ground data from 

fleets of PV systems connected to California’s grid. This task was accomplished using measured PV 

production data from two separate sources. 

One set of data was provided by CAISO for large PV plants connected to its system. The other set of data 

was provided by SMUD for small distributed PV systems connected to its system. Analysis of the CAISO 

data was performed in conjunction with a CEC project, titled, “Demonstration and Validation of PV 

Output Variability Modeling,” Project number CEC 500-10-059. This report is attached as Appendix 1. 

Analysis of the SMUD data was documented in a separate report. It is attached as Appendix 2. This 

section highlights results from those two reports. Additional details are presented in the appendices.  

3.2. Results for Large PV Systems Connected to CAISO 
CAISO provide fifteen-minute measured production data for 46 metered PV plants from March 10, 2013 

to April 19, 2013. The measured data were used to infer system specifications including rating, azimuth 

angle, and tilt. These system specifications were then used to simulate production. Figure 13 presents 

simulated vs. measured 15-minute average PV fleet power for each interval. All of the blue markers 

would be on the red line if simulated and measured results matched perfectly. The top of the figure 

corresponds to the “Initial” case of PV fleet production without PV performance filtering for plant 

performance problems (it corresponds to Figure 20 in the CEC report). A consistent power-related bias 

can be observed. This bias can be reduced by applying an inverter model tuning curve. The “Tuned” case 

is presented in the center of Figure 13. Significant scatter, however, can still be observed. This can be 

reduced by filtering the data for PV performance using the filtering from the previous section. The 

“Tuned & Filtered” case is presented in the bottom of Figure 13. There is a good alignment between 

simulated and measured data after making the tuning and filtering adjustments. Results show that the 

Initial, Tuned, and Tuned & Filtered cases have 7.2, 5.2, and 3.1 percent rMAE, respectively. 
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Figure 13. Simulated vs. measured average 15-minute power for CAISO metered PV fleet. 
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3.3. Results for Small Distributed PV Connected to SMUD 
SMUD provided measured hourly production data for 2,206 distributed PV systems from April 16, 2012 

to October 10, 2012. SMUD also provided specifications for all of the PV systems. PV production was 

then simulated using the system specification data combined with SolarAnywhere data. Figure 14 

presents simulated versus measured hourly energy production for the fleet of 2,206 distributed PV 
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systems from April 16, 2012 to October 10, 2012. Results indicate an accuracy of 6.2 percent Mean 

Absolute Error relative to energy (rMAE). These results demonstrate that accurate simulations of a large 

fleet of PV systems are obtainable. As was the case at CAISO, it is also likely that additional accuracy will 

be realized by improving the PV inverter model (e.g., see the CAISO results after tuning presented 

above). Note that this tuning is not applied for SMUD. 

Figure 14. Simulated vs. measured hourly energy production for 2,206 distributed PV systems from April 
16, 2012 to October 10, 2012. 

 

 

3.4. Conclusions 
Understanding the accuracy at which one can simulate fleet wide PV system energy production is a 

critical step towards facilitating increased PV penetration into California’s electricity system. Factors 

such as irradiance, shading, soiling, and system configuration greatly influence the performance of an 

installed PV system. Proper characterization of these factors is important to the simulation of PV system 

energy.   

Several conclusions can be drawn from these results. First, SolarAnywhere’s PV fleet simulation 

capabilities result in fairly accurate results, especially for fleets of PV systems. Results for the large 

metered PV plants connected to CAISO suggest that total rMAE was 7 percent for 15-minute time 

interval data. This result can be reduced to about 3 percent by tuning the model and incorporating plant 

operating status in the simulation. Results for the small distributed systems at SMUD demonstrated an 

accuracy of 6 percent rMAE when all systems and all days were included. The error was reduced to 5 

percent rMAE for a subset of well-behaved PV systems. Results further improved to 4 percent, when 

partly cloudy day conditions were removed 

Second, there is room for improvement in the underlying PV simulation methodologies by further 

inspection of simulated and measured data at the hourly and sub-hourly levels. Additional work can be 

done to develop a more accurate inverter model and to understand better application of PV modeling 

derate factors. Better data tuning and measured data cleaning methods would help identify and rectify 

faulty PV system specifications and help improve simulations.  
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4. Task 3: Integrate PV Fleet Simulation Into Utility Software Tools 

4.1. Introduction 
Task 1 was to create a high resolution (1-km, 1-minute resolution) solar resource database. Task 2 was 

to validate PV fleet simulation methodologies. Task 3 was to use the results from Tasks 1 and 2 to 

integrate PV fleet simulation methodologies into utility software tools. 

A fleet of PV systems can be defined very broadly. At one extreme, a fleet can refer to single PV system 

on the roof of one person’s house. That is, it is a fleet of one. At the other extreme, a fleet can refer to 

all PV systems located within the balancing area of a major authority such as the California ISO (CAISO). 

A fleet could even be defined more broadly and refer to all PV systems in the U.S. or even the world. 

User-defined collections of systems (“virtual” fleets) based on location, system attributes or other 

criteria are useful for planning and modeling purposes. 

The PV fleet simulation can be based on historical, real-time, or forecasted solar resource data. 

Historical data is useful for system planning. Real-time data is useful for assessing PV fleet operation. 

Forecasted data is useful for determining how to operate the rest of the utility system. 

4.2. Original Plan 
This broad definition of a PV fleet makes the simulation capabilities useful across a wide spectrum of 

utility applications. These applications range from planning and smart grid operation in the distribution 

system, utility load scheduling in the utility system, and balancing area planning and operation functions 

covering multiple utilities. 

The original project plan was to demonstrate PV fleet simulation capabilities across the range of 

applications. The approach was to have short-duration, limited scope demonstrations of how fleet 

simulation could be used. The simplest planned application was to simulate the historical production of 

a small PV fleet on a single distribution feeder. The most complex planned application was to forecast 

the output of all PV systems in California and supply this information to the CAISO. 

4.3. Revised Plan 
Simulating the historical PV fleet production for CAISO was one of the first applications that CPR began 

to work on. CAISO has the responsibility of maintaining reliability and accessibility for California’s utility 

grid. As such, they are concerned with the effect of power production from customer-owned PV systems 

on the balancing area. 

CPR’s interaction with CAISO revealed that, while CAISO clearly understood the performance of the 

approximately 50 large PV systems through detailed production monitoring, they had no visibility into 

the performance of the hundreds of thousands behind-the-meter PV systems. This was concerning to 

them. They needed to begin to develop a forecast for the fleet of behind-the-meter PV systems. That is, 

the greatest market need was the most complex application that CPR had originally anticipated. 

Furthermore, this was needed on a full-scale, not a limited scope. 
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It became clear that even beginning to address CAISO’s issue would require significant resources. It was 

determined that, rather than demonstrating PV fleet simulation for a wide range of applications with a 

limited scope, it would be more beneficial to begin the implementation of PV fleet forecasting for the 

most complex application: balancing area-wide, behind-the-meter PV fleet forecasting. PV fleet 

forecasting could then be applied to all other applications if it could be demonstrated for the CAISO 

balancing area. 

CPR embarked on the task of designing, testing, implementing, and operating the PV fleet forecasting 

system for the entire state of California. 

4.4. PV Fleet Simulation 
Figure 15 illustrates that there are three critical elements in performing a PV fleet simulation: solar 

resource data (listed as SolarAnywhere in the figure), PV system specifications, and a simulation model 

to convert this information into production. 

 

Figure 15. PV fleet simulation procedure. 

 

 

4.5. Solar Resource Data 
The first component required is the solar resource data. This data set was discussed above. Task 1 

produced a SolarAnywhere High Resolution data for the entire state of California. This 1-minute data set 

is produced every half hour and covers the subsequent 60 minutes at which point the time interval shifts 

to 30 or 60 minutes, depending upon time frame. As discussed above, this step required significant 

effort to move CPR’s processes to the Internet “cloud” in order to generate the data in an acceptable 

timeframe.  

4.6. PV System Specifications 
The second component required is the list of specifications for every PV system. At a minimum, this 

includes PV system rating, azimuth, tilt orientation, and fixed vs. tracking mode. This task was completed 
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in conjunction with a CEC project. Together, these two projects obtained specifications for all PV 

systems in California that had received an incentive to get installed. Many of the PV systems for 

California are included in CPR’s PowerClerk® database. As of the writing of this report, there are a total 

of more than 170,000 PV systems, with the number of systems continuing to grow each month. 

4.7. PV Simulation Model 
The third component required is a model that combines solar resource data with PV system 

specifications to simulate PV production. The simulation model needs to be capable of performing the 

simulation for each PV system individually and then combining the results for all systems into the PV 

fleet output. It needs to be able to perform the calculations rapidly, ideally in a parallel (concurrent) 

fashion. 

4.8. Challenges 
Three challenges were encountered in accomplishing this task. The first challenge was to obtain the 

data. This included both the solar resource data and PV system specification data for all systems in 

California. The second challenge was to perform the simulation quickly. The third challenge was to keep 

the data updated. 

4.9. Obtain Data 
The first challenge was to obtain the data. This included both the solar resource data and PV system 

specification data for all systems in California.  

The production of the solar resource data was described above. The result was that data was available in 

a 1-km grid for the entire state of California.  

The initial scope of the project was to simulate behind-the-meter PV production for a sample of PV 

systems in California. The scope was to simulate historical half-hour PV fleet output from 2008 to 2011. 

It became clear early on in the project that CAISO needed visibility into all PV systems in California. Thus, 

the decision was made to provide comprehensive simulation for all behind-the-meter PV systems in 

California. 

4.10. Behind-the-meter PV System Specifications 
The task of collecting the specifications for all PV systems was performed in conjunction with a CEC-

sponsored project. The details of the data collection are described in the Appendix. As described in the 

Appendix, covered programs included:  

 Renewable Portfolio Standard systems 

 Publicly owned utility Senate Bill-1 programs 

 CEC’s Emerging Renewables Program 

 New Solar Homes Partnership 

 Single Family Affordable Solar Homes 

 Self-Generation Incentive Program 

 California Solar Initiative 
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In addition to collecting data for all behind-the-meter systems, CPR needed to obtain specifications for 

PV systems connected to CAISO. CAISO provided high speed historical data for all of these systems. The 

specifications, however, were not available. CPR developed an approach to infer specifications from PV 

system performance data.4 

4.11. Perform Simulation Quickly 
The second challenge was to perform the simulation quickly. CPR originally planned to provide CAISO 

with simulated PV fleet production to use for planning purposes. As mentioned above, the decision was 

made to focus efforts on providing forecasts for all behind-the-meter PV system to CAISO. As a result, 

CPR needed to simulate production for hundreds of thousands of individual PV systems that could then 

be combined and delivered as fleets to CAISO. This needed to be done every half-hour. 

CPR’s forecasting system was not designed to accommodate high volume simulation requirements with 

short delivery schedules. As a result, this requirement presented CPR with a significant challenge. CPR’s 

system was re-architected and redeployed to an Internet “cloud”-based platform. This allowed CPR to 

satisfy CAISO’s technical requirements of high volume simulations delivered in short time-frames. 

4.12. Keep Data Up-to-Date 
The third challenge was to keep the data updated. The number of PV systems is growing rapidly in 

California. There were 70,000 PV systems in the state as of the end of 2011 (near the start of this 

project). There were more than 170,000 PV systems near the end of 2013 (as of the writing of this 

report). This means that the number of systems grew at a rate of faster than 50 percent per year. The 

number of systems has more than doubled in two years. There will be more than a million behind-the-

meter PV systems before 2020 if the market continues to grow at this rate. The capacity of these 

systems and the associated PV fleet forecast is presented in Figure 7. The data is presented according to 

the five regions defined by CAISO with the blue regions corresponding to behind-the-meter data and the 

red to the directly connected systems. 

To date, the maintenance of this information has been sustainable because most PV systems have 

received an incentive. More specifically, the PV system specification information has been collected in 

the process of receiving an incentive. This will change in places where incentives no longer drive the 

behind-the-meter market. This is one of the reasons CPR is extending PowerClerk to manage 

interconnection processes; in an incentive-less world, the system will provide a reliable, user- and utility-

friendly online system to collect accurate, thorough system specification data in a format relevant not 

only to interconnection optimization but also for downstream purposes including planning and 

operations. 

                                                           
4
 Patent approved for “Computer-implemented system and method for inferring operational specifications of a 

photovoltaic power generation system.” 
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Figure 16. California solar resource portfolio (Dec. 10, 2013). 

 

 

4.13. PV Fleet Simulation Validation (CAISO Data) 
PV fleet simulation results were validated using two sets of measured PV production data. The first set 

of data was provided by CAISO. The second set of data was provided by SMUD. Consider, first, results 

based on data provided by CAISO. 

The CAISO measures power production every four seconds for 46 PV plants. A 15-minute time interval is 

critical to the CAISO’s forecasting efforts above. Thus, the four-second measured PV power production 

was averaged to 15-minute data. CPR interacted with CAISO to determine data availability, resolve time 

synchronization issues, and take steps necessary to ensure data integrity. 

4.13.1. Sources of Error 
Inaccuracies degrade the ability of the simulation to reflect measured performance. These inaccuracies 

can be grouped into three categories. 

1. Solar resource. 
2. PV modeling. 
3. PV plant performance issues. 

Solar resource inaccuracies include errors in historical or forecasted solar resource data. PV modeling 

inaccuracies refer to limitations in the PV fleet modeling algorithms. PV plant performance issues reflect 

errors that occur because the plant is not operating as expected.  
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The effects of solar resource and PV modeling inaccuracies are fairly obvious. Inaccurate solar resource 

data (historical or forecasted) and/or PV fleet modeling algorithms clearly limit the simulation’s ability to 

reflect measured performance. 

PV plant performance issues are more subtle. Differences between simulated and measured PV 

production can still occur even if the simulation method perfectly predicts measured PV fleet power 

production for a fleet that is operating perfectly. Differences can occur if the actual PV fleet does not 

operate as expected due to system performance issues. That is, inaccuracies can occur that are 

unrelated to the fundamental simulation methodology. They are related to lack of incorporation of poor 

performance into the simulation. 

4.13.2. PV Plant Performance Issues 
The first step of the evaluation, therefore, is to determine how to address PV performance issues. One 

option is to incorporate plant status into the simulation methodology. The simulation, for example, 

would reflect a capacity reduction if a plant was only operating at 50 percent capacity. This option 

requires obtaining PV plant status information. This information, unfortunately, was unavailable for the 

CAISO fleet of PV systems. 

An alternative approach is to identify days when the individual plants had sub-par performance. These 

days and plants are then eliminated from the fleet simulation. This is the approach that was taken for 

this project. 

Fifteen-minute measured and simulated data were obtained for 46 CAISO metered PV plants from 

March 10, 2013 to April 19, 2013. The time series data were compared for each of the plants 

individually. The data was visually examined to assess days when the PV plant was either not operating 

or was clearly underperforming. Figure 17 and Figure 18 present the results of the analysis for two of 

the 46 plants. The red and blue lines correspond to simulated and measured data. The shaded areas 

represent days with plant performance issues. The dashed line corresponds to the daily rMAE. Figure 17 

corresponds to a plant that operated well during the whole time period. Figure 18 corresponds to a 

plant that had significant operational issues. 
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Figure 17. Example of PV Plant that operated as expected. 
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Figure 18. Example of PV Plant with possible performance issues. 

 

 

This process was repeated for all of the plants. Figure 19 summarizes plant performance for all 46 

plants. The y-axis corresponds to the plant number and the x-axis corresponds to the date. Blue 

corresponds to normal operation and red corresponds to performance issues. The figure suggests that 

the PV fleet experienced a significant number of performance issues over the six-week analysis period. 

 

Figure 19. Summary of performance issues for all metered plants. 
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4.13.3. PV Fleet Simulations: Time Series Data 
Simulations were performed using FleetView with and without plant filtering results from the previous 

section. Figure 20 presents PV fleet output without filtering. Figure 21 presents PV fleet output with 

filtering. A comparison of the two figures illustrates the improvement in accuracy by taking PV plant 

performance issues into consideration. 

 

Figure 20. PV fleet production before PV performance filtering. 

 

 

Figure 21. PV fleet production after PV performance filtering. 
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4.13.4. PV Fleet Simulations: Simulated vs. Measured Data 
An alternative way to present the data in Figure 20 is to plot simulated vs. measured average power for 

each 15-minute interval. Figure 22 presents the data in this manner. All of the blue markers would be on 

the red line if simulated and measured results matched perfectly. The top of the figure corresponds to 

the “Initial” case of PV fleet output without PV performance filtering (it corresponds to Figure 20). A 

consistent power-related bias can be observed.  

This bias can be reduced by applying the tuning curve presented in Figure 23. The “Tuned” case is 

presented in the center of Figure 22. Significant scatter, however, can still be observed. This can be 

reduced by filtering the data for PV performance using the filtering from the previous section.  

The “Tuned & Filtered” case is presented in the bottom of Figure 22. There is a good alignment between 

simulated and measured data after making the tuning and filtering adjustments.  
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Figure 22. Simulated vs. measured average 15-Minute power for CAISO metered PV fleet. 
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Figure 23. Power-based simulation tuning. 

 

 

4.13.5. Relative Mean Absolute Error 
The final step of the analysis is to calculate the rMAE. The time series data were evaluated over the 

approximately six-week time period for the 15-minute time interval data. Figure 24 presents results for 

three cases: Initial, Tuned, and Tuned & Filtered. These cases correspond to the results presented in 

Figure 22. Results show that the Initial, Tuned and, Tuned & Filtered cases have 7.2, 5.2, and 3.1 percent 

rMAE. 

Several observations can be made based on these results. First, overall, FleetView PV power modeling is 

pretty accurate. There is, however, room for improvement. In particular, improving the inverter power 

curve model for individual PV systems will substantially improve simulation results (i.e., the 

improvement identified by applying the tuning).  

Second, there is a substantially negative effect due to poorly performing plants even after the PV fleet 

model has been tuned. Accurately representing plant status reduces error by more than 40 percent.  

Third, three percent rMAE can be achieved for 15-minute time interval data using a well-tuned model 

that accounts for poor PV plant performance. This requires that: (1) accurate location-specific solar 

resource data is supplied; (2) correct PV specifications are used; (3) the inverter power curve is properly 

represented (i.e., the simulation is tuned); and (4) actual PV plant status is incorporated into the 

simulation.  
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Figure 24. Total rMAE. 

 

 

It is useful investigate the error on a daily basis in addition to an analysis over the entire time period. 

Figure 25 and Figure 26 present the daily rMAE for the 15-minute time interval before and after tuning 

the model. The blue and red colors correspond to simulation error and PV plant performance error 

respectively. PV plant performance error is estimated by subtracting simulation error with and without 

filtering. The figure shows that rMAE varies from day to day. While absolute error increases on some of 

days, rMAE tends to be higher on low energy days. This is because the rMAE calculation is defined as 

absolute error divided by measured energy.  
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Figure 25. Daily relative MAE using 15-minute time interval before tuning. 

 

 

Figure 26. Daily relative MAE using 15-minute time interval after tuning. 

 

 

4.13.6. Sample Days After Tuning and Filtering 
It is useful to compare simulated and measured data for a range of days after tuning and filtering. Figure 

27, Figure 28, and Figure 29 present measured and simulated PV fleet production. Figure 27 corresponds 

to a clear day. Figure 28 corresponds to a day with PV performance issues. Figure 29 corresponds to a 

day with variable weather and PV performance issues. 
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Several observations can be made. First, tuning the simulation model increases accuracy for all days. 

Second, modeling on a clear day is very good with a rMAE of less than 2 percent. Third, filtering for PV 

plant performance issues can be very important; rMAE was reduced from 20 percent to 4 percent on 

one particular day. Fourth, simulated data tracks measured data fairly well even for the worst 

performing day.  

 

Figure 27. PV fleet production on clear day. 
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    (March 12, 2013) 
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Figure 28. PV fleet production on clear day with production issues. 
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Figure 29. PV fleet production on variable weather day with production issues. 
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4.14. PV Fleet Simulation Validation (SMUD Data) 
Consider, next, results based on data provided by SMUD. 

4.14.1. Data Set Correlation 
SMUD provided historical PV data for 2,550 distinct PV systems. The data contained a timestamp, 

measured energy production, duration of the measurement (time increments from 5 minutes up to 

hourly), and the system’s Distributed Generation number (DG number). 
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PowerClerk® is used as the primary record for all PV systems in SMUD’s service territory. PowerClerk 

contains detailed system specifications, including inverter type and quantity, PV module type and 

quantity, array tilt, azimuth orientation, and shading. PowerClerk identifies each system by its DG 

number. 

The measured production data set and system specifications data set were linked using the DG number. 

The systems were assumed to be the same if the DG numbers matched. Random spot checks confirmed 

that this was a valid assumption. 

Matches were obtained for 2,338 of the 2,550 PV systems (i.e., 92 percent of the systems). No DG 

number match could be found in PowerClerk for 212 of the systems.  

4.14.2. PV Production Simulation 
Hourly energy was estimated by performing hourly simulations for each system using FleetView by 

combining system specifications with the SolarAnywhere Enhanced Resolution (1km) hourly data that 

corresponded to the system’s latitude/longitude. (Note: performing the simulation using two half-hour 

observations rather than one hourly observation would probably improve accuracy). 

Measured data that contained sub-hourly time intervals were converted to hourly time intervals.  

Simulated and measured data were time-correlated (i.e., matched up by date and time). Records were 

discarded where either the simulated or measured data was missing. 

4.14.3. Data Quality Issues 
It was determined that some of the measured data did not properly time-correlate with the simulated 

data. This was corrected by shifting the measured data backward or forward up to 60 minutes in 15 

minute intervals (-60,-45,-30, -15, 0, +15, +30,  +45,+60). The rMAE was calculated for each time shift. 

The time shift that resulted in the lowest rMAE was assumed to be the most correct for the measured 

data. Figure 30 illustrates this measured data time shift procedure for one day for one system. 
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Figure 30: Illustration of CPR's measured data time shift correction process. 

 

 

Site-specific tuning was applied to PV simulation results using CPR's dynamic tuning process once the 

simulated and measured data were time-correlated over the period of examination. A scale factor was 

selected that minimized certain error characteristics. Figure 31 illustrates the results of the dynamic 

tuning process for one day for one system. 

 

Figure 31: Illustration of CPR's dynamic tuning methodology. 
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4.14.4. Results (Fleet of Systems) 
Validation results were generated for both individual systems and fleets of systems. This section 

presents results based on the fleet of systems. Appendix B presents additional details. 

CPR completed successful simulations of 2,338 SMUD PV systems of which 132 systems were excluded 

due to various missing or erroneous measured data issues. Results from the 2,206 remaining PV system 

simulations are presented here.  

The time shift correction (illustrated in Figure 30) was applied to the measured data and the dynamic 

tuning analysis procedures (illustrated in Figure 31) was applied to simulated results for each PV system.  

Figure 32 presents the distribution of time shift analysis results for all measured PV systems. The 

majority of systems required little or no time correction.  

 
Figure 32: Distribution of time shift corrections applied to all PV systems (2206). 

 

 

The dynamic tuning methodology was applied to each PV system simulation. The distribution of results 

is presented in Figure 33. While the peak in scaling factors applied is centered about zero, there is strong 

asymmetry present towards the downscaling side of the distribution. This unevenness in the distribution 

is likely due to influences which tend to lead to PV system underperformance. These effects can include 

system soiling, module mismatch and degradation, and enhanced rooftop-related temperature losses. 

Figure 33 suggests that, in practice, it is more common for a PV system to underperform than to over 

perform.  
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Figure 33: Distribution of dynamic scaling factors applied to all locations (2206) derived from the six 
months of simulated vs. measured production data. 

 

 

Figure 34 presents 5 days of the aggregate fleet hourly simulation and measured production data for all 

2,206 PV systems. Overall, the fleet PV simulations line up with production better than at the individual 

level due to system wide smoothing effects.  As noted before, simulations for clear days tend to line up 

better with measured data than those for cloudy days. The daily rMAE statistics in Figure 35 confirm that 

there is lower error on sunny days. There is also less error observed on cloudy days due to aggregating 

of fleet production.  

Figure 36 presents the hourly-averaged MBE. It suggests that at a fleet-level the simulations tend to 

slightly over predict energy during the morning and late afternoon timeframes while under predicting 

energy during the peak sunshine part of the day. It is likely that this can be corrected through 

improvements to the inverter power curve modeling. 

Figure 37 illustrates the cloudy vs. clear day simulation aspects of the fleet simulations by breaking 

down the hourly simulated vs. measured statistics in: (a) all conditions; (b) clear day conditions; and (c) 

cloudy day conditions. The systematic morning/later afternoon over prediction and midday under 

prediction tendencies are well illustrated here.  
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Figure 34: Simulated (red line) and measured (blue line) production for all 2,206 systems. 

 

 

Figure 35: Aggregate daily MAE for all 2,206 systems from 4/16/2013 to 10/10/2013. 

 

 

Figure 36: Hourly MBE for all 2,206 systems. 
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Figure 37: Scatter plot of simulated vs. measured hourly energy production for all 2,206 systems from 
4/16/2012 - 10/10/2012 for all day conditions (a), clear days (b) and cloudy days (c). 

 

 

Table 1 presents error statistics for the fleet of 2,206 systems over a six-month period from 4/16/2012 

to 10/10/2012. Overall rMAE is 6.2 percent during this observational period under all conditions. This 

error drops to 5.4 percent when only clear days are included due to the exclusion of higher error prone 

cloudy days which exhibit 11.1 percent error on their own.  

 
Table 1: rMAE for all 2,206 systems. 

 Clear Days Cloudy Days All Days 

rMAE 5.4% 11.1% 6.2% 

Ave Daily Energy 185.8 MWh 143.9 MWh 178.2 MWh 

Number of Days 145 days 32 days 177 days 

 

4.14.5. Fleet of Well-Behaved PV Systems 
Further full fleet PV system simulation results are presented now. PV systems were removed with 
reported six-month MAE statistics higher than 10 percent to filter out some of the noise present in the 
fleet simulation process. This reduced the simulation pool to 1,102 systems.  
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Figure 38 presents examples of the trimmed down aggregate fleet hourly simulation and measured 

production data. Good partly cloudy day alignment can be seen with mostly cloudy days still presenting 

challenges. The daily rMAE statistics in Figure 39 confirm the presence of lower error on sunny days with 

less error also observed on cloudy days due to the aggregation of fleet PV production.  The highest 

noted daily rMAE error day (May 3) is presented in Figure 38. Heavy overcast cloud conditions 

dominated the SMUD-footprint region on May 3 which resulted in lower energy simulations due to the 

under prediction of surface irradiance.  

The improvement in fleet error statistics is further illustrated in the hourly-averaged MBE presented in 

Figure 40. There is less morning and afternoon error while the previously noted midday under prediction 

error almost disappears. Figure 41 further illustrates the cloudy vs. clear day simulation aspects of the 

fleet simulations by breaking down the hourly simulated vs. measured statistics during: (a) all 

conditions; (b) clear day conditions; and (c) cloudy day conditions. 

Figure 38: Simulated (red line) and measured (blue line) production for 1,102 well-behaved systems over 
a four day period in May. 

 

Figure 39: Aggregate daily MAE for 1,102 well behaved systems from 4/16/2012 to 10/10/2012. 

 

Figure 40: Hourly MBE for 1,102 well behaved systems. 
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Figure 41: Scatter plot of simulated vs. measured hourly energy production for 1,102 well-behaved sites 
from 4/16/2012 to 10/10/2012 for all day conditions (a), clear days (b) and cloudy days (c). 

 
 

Table 2 presents error statistics for the fleet of 1,102 well-behaved systems over a six-month period 

from 4/16/2012 to 10/10/2012. Overall rMAE is 4.5 percent during this observational period under all 

conditions. This error drops down to 3.5 percent when only clear days are included due to the exclusion 

of higher error prone cloudy days which exhibit 10.0 percent error on their own. 

Table 2: rMAE for 1,102 well-behaved systems. 

 Clear Days Cloudy Days All Days 

rMAE 3.5% 10.0% 4.5% 

Ave Daily Energy 112.8 MWh 88.3 MWh 108.4 MWh 

Number of Days 145 days 32 days 177 days 
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5. Technology Transfer 
A substantial amount of work was performed under the grant agreement. In order to make the results 

as useful as possible, the results were extensively documented. The documentation includes six patent 

applications, a peer reviewed journal article, seven conference papers, and a state-of-the art solar 

resource database for all of California. 

5.1.1. Pending Patents 
The six patent applications include computer-implemented methods for: 

 Tuning photovoltaic power generation plant forecasting. 

 Bounding accuracy on a forecast of photovoltaic fleet power generation. 

 Inferring operational specifications of a photovoltaic power generation system. 

 Correlating satellite imagery for use in photovoltaic fleet output estimation. 

 Estimating photovoltaic energy generation for use in photovoltaic fleet operation. 

 Bounding accuracy on correlated overhead sky clearness for use in photovoltaic fleet output 
estimation. 

5.1.2. Journal Article 
The journal article includes: 

 “Using Satellite Insolation Data to Calculate PV Power Output Variability.” Paper published in 
Photovoltaics International, Second Quarter, May 2013, pages 94-99. 

5.1.3. Conference Presentations 
The conference presentations include: 

 “Behind-the-Meter PV Fleet Forecasting.” Presentation and paper presented at ASES Solar 
World 2013. Baltimore, MD, April 2013. 

 “Behind-the-Meter PV Fleet Forecasting: Results for 130,000 PV Systems in California” 
Presentation at SEPA Utility Solar Conference. Portland, Ore., April 2013. Presentation available 
at: http://www.cleanpower.com/wp-content/uploads/SPI-USC-2013-04-03.pdf 

 “Integrating PV Into Utility Planning and Operation Tools.” Presentation at DOE/CPUC High 
Penetration Solar Forum. San Diego, CA, Feb., 2013. Presentation available at: 
http://www.cleanpower.com/wp-content/uploads/SolarForum2013.pdf  

 “Forecasting Output for 130,000 PV Systems in California.” Presentation at Utility Wind 
Integration Group (UVIG) Workshop on Variable Generation Forecasting Applications to Power 
System Planning and Operations. Salt Lake City, UT, Feb., 2013. Presentation available at: 
http://www.cleanpower.com/wp-content/uploads/Forecasting-Output-for-130000-PV-Systems-
in-California.pdf.  

 “Behind-the-Meter PV Fleet Forecasting.” Presentation at Utility Wind Integration Group (UVIG) 
Fall Technical Workshop. Omaha, NE, Oct., 2012. 

http://www.cleanpower.com/wp-content/uploads/SPI-USC-2013-04-03.pdf
http://www.cleanpower.com/wp-content/uploads/SolarForum2013.pdf
http://www.cleanpower.com/wp-content/uploads/Forecasting-Output-for-130000-PV-Systems-in-California.pdf
http://www.cleanpower.com/wp-content/uploads/Forecasting-Output-for-130000-PV-Systems-in-California.pdf
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 “Accuracy of Solar Modeling & Forecasting.” Presentation at Solar Power International. Orlando, 
FL, Sep. 2012.  

 “Solar Monitoring, Forecasting, and Variability Assessment at SMUD.” Presented at WREF 2012 
(SOLAR 2012). Denver, CO, May 2012. Paper available at. http://www.cleanpower.com/wp-
content/uploads/SMUD-Solar-Assessment_2012.pdf. 

5.1.4. Solar Data 
The solar data was made publicly available: 

 SolarAnywhere Enhanced Resolution (1 km x 1 km, half-hour) freely available to general public 

at www.solaranywhere.com. 

 SolarAnywhere High Resolution (1 km x 1 km, one-minute) data used to forecast PV fleet 

production for CAISO. 

 

  

http://www.cleanpower.com/wp-content/uploads/SMUD-Solar-Assessment_2012.pdf
http://www.cleanpower.com/wp-content/uploads/SMUD-Solar-Assessment_2012.pdf
http://www.solaranywhere.com/
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6. Conclusions 

6.1. Key Findings 
The California Solar Initiative (CSI) has a goal of installing 3,000 MW of new solar electricity by 2016. CSI 

has identified that one potential barrier to accomplishing this goal is planning and modeling for high-

penetration PV grid integration issues. A team led by Clean Power Research (CPR) received approval 

from the California Public Utilities (CPUC) for a grant titled, “Integrating PV into Utility Planning and 

Operation Tools.”  

The project accomplished the following grid-integration tasks: 

1. Extend the SolarAnywhere Enhanced Resolution solar resource database, create high resolution 

(1 km, 1-minute resolution) solar resource data, and benchmark data accuracy. 

2. Validate previously developed PV fleet simulation methodologies using measured ground data 

from fleets of PV systems connected to California’s grid. 

3. Integrate PV fleet simulation methodologies into utility software tools for use in activities 

ranging from distribution planning to balancing area operations using CAISO as a test case. 

Key conclusions from this work are: 

 High resolution solar resource data can be accurately produced. 

 This solar resource data can be combined with PV system specifications to accurately simulate 

PV fleet production.  

 The simulation process can be performed quickly enough to support even the challenging 

application of forecasting production for hundreds of thousands of systems while meeting 

forecasting time horizon requirements using the appropriate computing resources and 

underlying system architecture. 

6.2. Benefits to California Ratepayers 
This project has provided a number of benefits to the state of California. 

6.2.1. Solar Resource Data 
The first task was to extend SolarAnywhere. SolarAnywhere Enhanced Resolution provides 1 km x 1 km 

spatial resolution with half-hour temporal resolution irradiance data. It is beneficial in that it is 

comprehensive for all of California and is freely available at www.SolarAnywhere.com. California’s 

project developers are also leveraging the increased Enhanced Resolution data accuracy to obtain lower 

financing rates because of reduced project risk; this lowers the cost of solar and increases the 

penetration of PV in the state. SolarAnywhere High Resolution extends the Enhanced Resolution to one-

minute temporal resolution. The High Resolution data is used in PV penetration and variability studies as 

well as in solar forecasting for the CAISIO as described below. 

6.2.2. PV Fleet Simulation Validation 
The second task was to validate PV fleet simulation methodologies using measured ground data from 

fleets of PV systems connected to California’s grid. It is critical to the utilities and balancing area 

http://www.solaranywhere.com/
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authorities responsible to run the grid that they validate models using real-world data. The validation 

provides public benefits because grid operators need to gain confidence in the models intended to 

inform grid operation prior to their use. 

6.2.3. PV Fleet Simulation Integration Into Utility Software Tools 
The third task was to integrate PV fleet simulation methodologies into utility software tools. CAISO has 

the responsibility of maintaining reliability and accessibility for California’s utility grid. As such, they are 

concerned with the effect of power production from customer-owned PV systems on the balancing area. 

Prior to this contract, CAISO did not have visibility into the performance of behind-the-meter PV 

systems. CPR has been providing behind-the-meter PV fleet forecasts every 30 minutes to CAISO for 

almost one year. This is beneficial to California in that CAISO has visibility into behind-the-meter PV 

performance when none existed prior to this grant. It has the additional benefit of being a valuable case 

study for California’s IOUs as they consider using the same approach for their needs. 

6.3. Potential Next Steps 
The next steps of this work could be as follows:  

 Continue to improve high resolution solar resource forecasting accuracy. 

 Implement a streamlined interconnection process to simultaneously collect PV system 

specifications in order to continue to be able to define the PV fleet. 

 Transition PV fleet forecasting from R&D to an operational environment and integrate into 

utility tools. 

 Design and implement probabilistic/ramp event PV fleet forecasting system. 

 Continue to validate results. 

The tools and data streams developed as part of this work will be made available to California utilities, 

ISOs and others to help cost-effectively and reliably integrate distributed PV into the grid. 
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ABSTRACT 

The California Energy Commission’s (CEC) Public Interest Energy Research (PIER) program 

awarded Clean Power Research a contract to evaluate satellite-derived irradiance and simulated 

PV fleet performance accuracy for PV resource management in the CAISO control area. The 

goals of the Agreement are to validate existing research and tools, and to integrate the results 

into the CAISO’s planning process.  

Under this research, Clean Power Research® (CPR) has collected a database that includes all of 

the solar PV systems installed in California and developed a unique method to predict PV fleet 

power production. SolarAnywhere® FleetView™ uses inputs of satellite-derived solar resource 

data and the design attributes and locations of PV systems to predict PV fleet power 

production. 

The database includes locations of all PV systems in California. PV fleet power production was 

simulated using FleetView. Measured PV power production was provided by the CAISO. The 

measured data was used to identify performance issues and to compare with simulated results. 

The PV fleet power production variability modeling results suggest that 3 percent Relative 

Mean Absolute Error (rMAE) can be achieved for PV fleet simulation for 15-minute time 

interval data over a six-week period given that accurate location-specific solar resource data is 

supplied; correct PV specifications are used; the PV simulation model is properly tuned; and PV 

plant operating status is reflected in the simulation to account for poor performance. Results 

also suggest that total error was over 7 percent if the model was not tuned and PV plant 

operating status was not reflected in the simulation. 

 

Keywords: California Energy Commission, California Independent System Operator, Clean 

Power Research, SolarAnywhere, FleetView, PV production, PV production, PV variability, 

renewable energy 
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EXECUTIVE SUMMARY 

Photovoltaic (PV) plant production variability is a critical challenge to increased PV penetration 

into California’s electricity system. A number of studies have examined the issue of PV output 

variability (see [1] through [12]). A consistent finding of these studies is that variability is 

reduced when PV systems are geographically dispersed. That is, variability is reduced as the 

number of systems increases across a sufficiently large geographic region. 

The California Energy Commission’s (CEC) Public Interest Energy Research (PIER) program 

awarded Clean Power Research® (CPR) a contract to evaluate satellite-derived irradiance and 

simulated PV fleet performance accuracy for PV resource management in the CAISO control 

area. The goals of this research are to validate existing research and tools, and to integrate the 

results into the CAISO’s planning process. The accuracy of the method needs to be 

demonstrated for PV sources within the CAISO control area, and data needs to be delivered in a 

manner compatible with the existing energy and reserve market mechanisms. 

Under this research, CPR has collected and delivered to CEC a database that includes all of the 

solar PV systems installed in California and developed a unique method to predict PV fleet 

power production variability. The method uses inputs of satellite-derived solar resource data 

and the design attributes and locations of PV systems. It combines these inputs with advanced 

algorithms to track cloud patterns to predict output. 

The database includes locations of all PV systems in California. PV fleet power production was 

simulated using FleetView. Measured PV power production was provided by the CAISO. The 

measured data was used to identify performance issues and to compare with simulated results. 

The PV fleet power production variability modeling results suggest that 3 percent Relative 

Mean Absolute Error (rMAE) can be achieved for PV fleet simulation for 15-minute time 

interval data over a six-week period given that accurate location-specific solar resource data is 

supplied; correct PV specifications are used; the PV simulation model is properly tuned; and PV 

plant operating status is reflected in the simulation to account for poor performance. Results 

also suggest that total error was over 7 percent if the model was not tuned and PV plant 

operating status was not reflected in the simulation. 

The California Independent System Operator (CAISO) sees potential of using this approach in 

planning for system operations under alternative renewable energy scenarios. It also sees 

potential for using the approach for forecasting PV fleet production. Additional validation, 

however, is required before the method is usable by the CAISO to inform planning for future 

operational needs. 

 



 

 

 

.
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CHAPTER 1:  
California PV System Database 

PV fleet power prediction requires technical specifications for each PV system (see Figure 1). 

Thus, the first objective of this project is to develop a database of the PV systems in California. 

 

Figure 1. Fleet simulation procedure. 

 

 

Many of the PV systems for California are included in CPR’s PowerClerk® database. Some 

systems, such as the large PPA projects and systems installed by utilities without PowerClerk, 

are not included. The PowerClerk data set must therefore be supplemented by other data 

sources to provide the basis for fleet simulation. This section summarizes the PV hardware 

database that describes the grid-connected PV fleet in California. 

1.1 Existing System Data in Database 

The first step was to document and characterize the set of existing PV system data already in 

the PowerClerk database. This was accomplished by analyzing the PowerClerk set of programs.  

Table 1 summarizes the results at the beginning of this project (2010). It illustrates that the CSI 

programs at the California IOUs are well-covered, as are LADWP, SMUD, and the City of Palo 

Alto (CPAU) and a portion of Anaheim Public Utilities (APU). 
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Table 1: Existing PV Systems in PowerClerk 

 

 

1.2 Categories of Systems 

The second step was to characterize the “missing” systems that would be the focus of the data 

collection effort. The main categories include: 

 Renewable Portfolio Standard systems (RPS). 

 Publicly owned utility Senate Bill-1 programs (POU SB-1). 

 CEC’s Emerging Renewables Program (ERP). 

 New Solar Homes Partnership (NSHP). 

 Single Family Affordable Solar Homes (SASH). 

 Self-Generation Incentive Program (SGIP). 

 

Program ID Agency Program State Obsolete

Number of 

Completed 

Applications

25 APU Solar Electric Program CA FALSE 239

20 BWP Burbank Water and Power Solar Support Program CA FALSE 72

11 CCSE Small Commercial (< 10 kW) and All Residential CA FALSE 7,128

12 CCSE Large Commercial (>= 10 kW) CA FALSE 86

28 CCSE Multifamily Affordable Solar Housing CA FALSE 28

33 CPAU PV Partners CA FALSE 14

50 LADWP Solar Incentive Program CA FALSE 14

51 LADWP Solar Incentive Program - Legacy CA FALSE 4,088

7 PG&E Small Commercial (< 10 kW) and All Residential CA FALSE 30,668

8 PG&E Large Commercial (>= 10 kW) CA FALSE 537

26 PG&E Multifamily Affordable Solar Housing CA FALSE 57

9 SCE Small Commercial (< 10 kW) and All Residential CA FALSE 15,601

10 SCE Large Commercial (>= 10 kW) CA FALSE 249

27 SCE Multifamily Affordable Solar Housing CA FALSE 29

4 SMUD Residential Retrofit PV Program CA FALSE 1,099

18 SMUD Commercial PV Program CA FALSE 69

19 SMUD Commercial New Construction PV Program (Obsolete) CA TRUE

34 SMUD SMUD PV-Commercial CA FALSE 3

35 SMUD SMUD Contracted-Residential Retrofit CA FALSE 343

36 SMUD SMUD Contracted-Commercial CA FALSE 32

37 SMUD Conversions-From SMUD to Customer Owned CA FALSE 81

38 SMUD Community Solar CA FALSE 16

39 SMUD SolarSmart CA FALSE 0

40 SMUD SMUD Financed Church Program CA FALSE 15

41 SMUD SMUD Contracted-Residential New Construction CA FALSE 110

42 SMUD Residential PV-New Construction (pre SolarSmart) CA FALSE 139

43 SMUD Commercial Self Install-No Rebate CA FALSE 11

44 SMUD Residential Self Install-No Rebate CA FALSE 44

45 SMUD SMUD PV-Utility CA FALSE 24

60,796
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1.3 Data Collection Plan 

The following describes the plan to collect, qualify and enter the data necessary to supplement 

the existing database. Sunterra Solar Inc., of Novato, California was selected as the contractor to 

research these systems and contact utilities as necessary to obtain system location, hardware 

and orientation details required for modeling.  

The subcontractor performed the following services: 

 Review the materials provided by CPR: 

o Sample Data Format. 

o List of Major Solar Projects. 

o List of California LSEs. 

o PV System Specification Sources. 

 Contact utilities, project owners, and others by email and telephone to obtain PV system 

specifications. 

 Enter data into a CPR-provided web-based database interface. 

 Attend up to 3 face-to-face meetings in CPR’s Napa office. 

1.4 All California PV Database 

Table 2 summarizes the data that was collected as of March 2012, now constituting the “All 

California PV Database.” 78,025 of these systems (773 MW) existed in PowerClerk, primarily 

from the CSI program. RPS systems are large, multi-MW systems used by the IOUs (or owned 

by the IOUs) to meet state RPS obligations. This includes the 290 MW Agua Caliente project. 

 

Table 2: Summary of the All-California PV Database at Start of Project 

 No. Systems Capacity (MW) 

PowerClerk (existing) 78,025* 773 

RPS 37 644 

POU (SB-1) 45 50 

CEC ERP (Before 2005) 11,455 45 

CEC ERP (2005 and later) 16,602 78 

New Solar Homes Partnership (NSHP) 12,543 40 

Single Family Affordable Solar Homes (SASH) 1,949 7 

Self-Generation Incentive Program (SGIP) 917 144 

Total 121,573 1,781 

 

Data from publicly-owned utilities (POUs) was obtained from the SB-1 reporting requirements. 

ERP, NSHP, SASH, and SGIP represent various incentive programs available to California 

consumers over several years. System-level data from each of these programs was obtained and 

included in the database. 
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Table 3 summarizes the data collected for the publicly owned utilities (POUs) based on required 

reporting under SB-1. The fleets were analyzed to prevent duplication in cases where the utility 

had systems described in PowerClerk. 

 

Table 3: Publicly-Owned Utility Capacity (POU SB-1) 

POU Capacity (MW) 

Alameda Municipal Power 0.60 

Anaheim Public Utilities 1.97 

Azusa Light & Water 0.15 

Banning Public Utilities 0.73 

Biggs Municipal Utilities 0.01 

Burbank Water & Power 2.01 

Colton Electric Utility 1.03 

Glendale Water & Power 1.32 

Gridley, City of 0.01 

Healdsburg, City of 0.27 

Hercules Municipal Utility 0.02 

Imperial Irrigation District 4.06 

Lassen Municipal Utility District 0.10 

Lodi Electric Utility 1.20 

Lompoc, City of 0.44 

Merced Irrigation District 0.04 

Modesto Irrigation District 9.01 

Moreno Valley Electrical Utility 0.08 

Needles, City of 0.07 

Palo Alto, City of 2.73 

Pasadena, Water & Power Department 3.22 

Pittsburg Power Company 0.09 

Plumas-Sierra Rural Electric Cooperative 0.19 

Rancho Cucamonga Municipal Utility 0.06 

Redding Electric Utility 0.63 

Riverside Public Utilities 3.26 

Roseville Electric 2.11 

Santa Clara, City of 0.03 

Shasta Lake, City of 0.05 

Silicon Valley Power 4.94 

Trinity Public Utility District 0.07 

Truckee Donner Public Utilities District 0.27 

Turlock Irrigation District 6.39 

Ukiah, City of 0.08 
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1.5 Metered PV Fleet 

Renewable Portfolio Standard (RPS) systems include large systems that utilities built or 

contracted to satisfy obligations. These systems are directly metered by the CAISO. These 

systems are also referred to as the metered systems, or the CAISO metered fleet. 

The CAISO metered fleet consists of 46 PV plants. Forty-four of the plants are located in 

California. Two of the plants are located in Arizona and tie electrically to the CAISO’s control 

area. Figure 2 summarizes the PV plant capacity (MW-AC) of the metered systems. Table 4  

provides a list of the plants. The blue bars correspond to the ratings of each individual plant. 

The plants are ordered according to decreasing capacity. The red line presents cumulative PV 

plant capacity vs. the number of plants. 

 

Figure 2: PV Plant Capacity and Cumulative Fleet Capacity vs. Number Metered Plants (MW-AC) 
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Table 4: List of Metered PV Plants 

Plant Number Capacity (MW-AC)  Plant Number Capacity (MW-AC) 

1 269.7  24 3.2 

2 202.6  25 3.0 

3 94.9  26 2.9 

4 94.5  27 2.9 

5 44.8  28 2.7 

6 22.1  29 2.3 

7 20.8  30 2.3 

8 20.5  31 2.1 

9 19.9  32 2.0 

10 19.9  33 2.0 

11 18.9  34 2.0 

12 14.5  35 2.0 

13 13.5  36 1.8 

14 10.8  37 1.5 

15 9.0  38 1.5 

16 7.7  39 1.4 

17 5.9  40 1.4 

18 4.9  41 1.3 

19 4.8  42 1.1 

20 4.8  43 1.1 

21 4.7  44 0.9 

22 3.9  45 0.7 

23 3.6  46 0.5 

 

1.6 CAISO Control Area Groupings 

CPR determined during the course of the project that it was insufficient to provide a single PV 

fleet prediction for the entire state of California. Rather, the CAISO required that PV fleet power 

predictions be grouped in specific ways. The CAISO specified that the data be grouped into five 

regions, as defined in Table 5. 

In addition, the CAISO specified that PV systems need to be categorized as either metered 

systems or behind-the-meter systems for each region. Thus, ten PV fleet power predictions need 

to be provided to the CAISO. 
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Table 5: CAISO Regions 

 Metered Behind-the-Meter 

PG&E Bay Area   

PG&E Non-Bay Area   

SCE Coastal   

SCE Inland   

SDG&E   

 

After all of PV specifications were collected, each PV system was matched to one of the ten 

groups. 

Figure 3 illustrates the mapping process for one PV system. Detailed PV specification data for a 

single system was mapped to the city of San Francisco. This, in turn, was mapped to the PG&E 

Bay Area CAISO region. Finally, it was a behind-the-meter PV system so it was mapped to the 

“PG&E Bay Area Behind-the-Meter” group. 

This process was repeated for all metered and behind-the-meter PV systems. The resulting 

capacity as of January 1, 2013 for the state of California is presented in Figure 4. In addition, the 

PV systems that supplied power to other control areas were mapped to their respective control 

areas.  

 

Figure 3: PV System Mapping Process 
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Figure 4: California PV Capacity 
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Chapter 2:  
High Resolution Solar Resource Data  

PV fleet power prediction requires solar resource data that corresponds to the location of each 

PV system (see Figure 1). The second task of this project was to assess high resolution solar data 

accuracy for a defined fleet of PV systems. 

2.1 Definitions 

It is important to clearly define what is meant by accuracy before discussing solar resource data 

accuracy. Accuracy validation often means different things to different people. As such, it is 

useful to begin with a definition of how accuracy quantification can be performed. 

Three fundamental questions need to be answered to provide a clear definition of how accuracy 

quantification is performed. 

1. What is the data source? 

2. What are the time attributes? 

3. What is the evaluation metric? 

2.1.1 Data Source 

The first step is to identify the data that is being evaluated. Options include irradiance data or 

simulated PV power production using irradiance data and other parameters. In addition, the 

analysis can be performed for individual locations or fleets (i.e., multiple locations). This 

chapter focuses on irradiance data. The analysis is performed for both individual locations and 

fleets. A subsequent chapter assesses accuracy for PV fleet production data. 

2.1.2 Time Attributes 

The second step is to specify the required time attributes. These include: 

 Time period: total amount of data included in the analysis. This can range from a few 

minutes to many years. This chapter focuses on one year worth of data. 

 Time interval: how the data in the time period is binned. This can range from a few 

seconds to annually. For example, if the time period is one year and the time interval is 

one hour, the time period would be binned into 8,760 time increments. This chapter 

examines one-minute to one-year time intervals. 

 Time perspective: when the predicted observation is reported. This can range from 

historical (backward looking) to forecasted a few hours ahead to forecasted multiple 

days ahead (forward looking). This chapter focuses on historical data. 

2.1.3 Evaluation Metric 

The third step is to select the evaluation metric. Error quantification metrics used in assessing 

absolute irradiance model accuracy such as Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) have been precisely defined  [17], [18]. Their relative counterpart (results 

expressed in percent), however, can be subject to interpretation and may cover a wide range of 

values for a given set of data depending on reporting practice.  
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Appendix A suggests that the MAE relative to available energy (rMAE) is a good method to 

measure relative dispersion error. This is the method used in the present analysis. The MAE 

relative to the average energy available is calculated by summing the absolute error for each 

time interval over the time period, and then dividing by the total available energy. 

 

                              
∑ |  

       
   
| 

   

∑   
    

   

 ( 1 ) 

 

where   
     is the test irradiance at time t,   

   
 is the reference irradiance at time t, and N is the 

number of time intervals. 

It is useful to provide a hypothetical example of how to calculate the rMAE. A short time period 

(one day) is selected in order to graphically illustrate the calculations; the actual calculations in 

this paper use a one year time period.  

As presented in Figure 5, the process is follows: 

 Select time period: 1 day. 

 Select time interval: 1 hour. 

 Calculate absolute error for each hour and sum the result as described in the top part of 

Equation ( 1 ): 1.6 kWh/m2/day. 

 Calculate available energy for each hour from reference data and sum the result as 

described in the bottom part of Equation ( 1 ): 4.5 kWh/m2/day. 

 Calculate Relative Mean Absolute Error: 36% (i.e., 1.6/4.5). 

 

Figure 5: Mean Absolute Error Relative to Available Energy Calculation Example 

 

 

It is important to note that a more often reported measurement of error is MAE relative to 

generating capacity. In the above example, however, it is unclear over what time period the 
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generating capacity should be selected. Should it be capacity during daylight hours or capacity 

over the entire day, including night time hours? MAE relative to daytime capacity is about 

13.3% (i.e., 1.6/12) while Mean Absolute Error relative to full day capacity is about 6.6% (i.e., 

1.6/24). 

It is due to this sort of ambiguity, as well as the fact that MAE relative to energy is a much more 

stringent metric (e.g., in this example, MAE relative to energy is 6 times higher than MAE 

relative to daily generation capacity), that the MAE relative to energy (rMAE) is selected as the 

evaluation metric. 

2.2 Approach 

This metric can be used to quantify irradiance data accuracy for a one-year time period (2011) 

with time intervals ranging from one-minute to one-year using a historical time perspective. 

The analysis was performed for both individual locations and the ensemble of those locations. 

2.3 Location Selection 

2.3.1 Locations Selected for Validation 

Ten of the 46 metered locations were randomly selected for validation purposes. In order to 

perform the detailed analysis, each location had to have two global horizontal insolation (GHI) 

monitoring devices available on site and have one year’s (2011) worth of data available. There 

were six locations that passed this initial screening. 

A total of six test locations were analyzed where PV systems are located within the CAISO 

control area. The locations are identified as locations A through F. Each location is equipped 

with two redundant global horizontal irradiance (GHI) sensors. One of the sensors was used as 

a reference and compared to four test configurations: the second ground sensor, and three 

satellite-derived sources (SolarAnywhere Standard, Enhanced, and High Resolution data sets). 

The validation approach involved the following steps: 

 Obtain time-series GHI data for 2011 for six locations: 

o 4-second data averaged into 1-minute time intervals from two separate sensors at 

each location (sources: CAISO [20]) 

o Satellite based data at the following resolutions (source: SolarAnywhere [14]) 

 1 minute, 1 km grid (High Resolution) 

 ½ hour, 1 km grid (Enhanced Resolution) 

 1 hour, 10 km grid (Standard Resolution) 

 Time-synchronize data sets by converting ground sensor data from Pacific Daylight 

Time to Pacific Standard Time. 

 Evaluate all observations for data quality; exclude data where any one of the data 

sources has data quality issues. 

 Calculate rMAE using the ground sensor that minimizes SolarAnywhere error as a 

reference. 

 Calculate rMAE using the other ground sensor as a reference. 

 Repeat the analysis for fleets of locations. 
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2.3.2 Obtain Time Series Data 

CPR extended SolarAnywhere Standard Resolution (10 km spatial/1 hour temporal resolution) 

to SolarAnywhere Enhanced Resolution (1 km spatial/ 30 minute temporal resolution) under a 

previous contract.1 Figure 6 illustrates the increase in resolution for San Francisco, CA. 

 

Figure 6: SolarAnywhere Standard and Enhanced Resolution  

 

(San Francisco, CA) 

 

A critical part of this CEC project was to extend SolarAnywhere Enhanced Resolution to 

SolarAnywhere High Resolution (1 km spatial/ 1 minute temporal resolution). The data was 

generated for all selected locations. Figure 7 presents a sample of the data for one day (July 4, 

2011) at one location (CAISO Site A). 

 

  

                                                      
1 California Solar Initiative Solicitation #1 Grant Agreement, “Advanced Modeling and Verification for 

High Penetration PV”. 
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Figure 7: Time Series Data for All Data Sources on July 4, 2011 at CAISO Site A 

 

 

2.3.3 Evaluate All Observations for Data Quality 

As mentioned above, one of the steps in the analysis was to evaluate all observations for data 

quality. When evaluating accuracy, it is often simply assumed that reference data is correct. 

This assumption is made due to the difficulty in determining whether or not the reference data 

is correct: to what can the reference data be compared? 

A unique aspect of the data provided by the CAISO is that all the locations have two ground 

sensors. As a result, since either sensor could be the reference, the data quality of the ground 

sensors was assessed by comparing the two ground data sets.  

This was the process used to assess data quality: 

(1) Compare the two sets of ground sensor data to each other to determine when one value 

is substantially different than the other value. 

(2) Compare the enhanced resolution satellite and ground sensor data to search for 0 values 

occurring at incorrect times (e.g., mid-day on otherwise clear day) to determine when 

the satellite data is invalid. 

(3) Compare ground sensor data to the SolarAnywhere Enhanced Res. data to determine if 

both ground observations are the same but are obviously incorrect (e.g., the irradiance 

value remains at a constant level for many hours).  

The complete data set was evaluated and then potential outliers were manually evaluated and 

screened for each of these steps. Figure 8 illustrates the screening result when comparing the 

two ground sensors at one location. All of the data points would lie on the 45 degree red line if 

they were identical. The blue symbols correspond to valid data and the black symbols 

correspond to invalid data. Figure 9 illustrates the issue for one of the invalid observations 

when one of the sensor’s recorded values remained constant after solar noon. Figure 10 
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illustrates the case when both ground sensors produced a similar value but were obviously 

incorrect, reading a constant low value on an otherwise clear day as assessed from the satellite 

data. Figure 11 illustrates the case when there was a night-time calibration error across the year. 

Site E was missing more than a month of data during the first part of the year as well as a five 

percent difference between the two ground sensors.  

Sites E and F were eliminated from the analysis as a result of the data filtering process. The 

remaining sites had about one percent of the ground data marked as invalid. 

 

Figure 8: Half-Hour Energy Production in 2011 from Meter 2 vs. Meter 1 (Site A) 

 

 

Figure 9: Example of When Only One of the Ground Sensors Has Invalid Data  

 

             (Site A, June 22, 2011) 
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Figure 10: Example of When Both Ground Sensors Have Invalid Data  

 

         (Site C, May 1-2, 2011) 

Figure 11: Site F Has a Night-Time Calibration Error across the Year 

 

 

2.4 Results 

rMAE was calculated for three scenarios: 

 Each location individually. 

 Average of individual locations. 

 Fleet of locations. 

2.4.1 Each Individual Location 

Figure 12 presents the rMAE for each of the four locations using time intervals ranging from 1 

minute to 1 year. 
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Figure 12:  Relative MAE for Each Location Individually 

 

 

2.4.2 Average of Individual Locations 

Figure 13 presents the average rMAE of four individual locations. The black line summarizes 

the error when two ground stations were used (one was the reference and the other was the 

test). The green, blue, and red regions summarize the error when SolarAnywhere High, 

Standard, and Enhanced Resolution were compared to the ground sensor. The green, blue, and 

red areas are regions rather than lines because they compare satellite data to ground data using 

the two different ground sensors: the top of the region is the comparison using the ground 

sensor that maximizes error; the bottom of the region is the comparison using the ground sensor 

that minimizes error. 

There are several important things to notice in the figure. First, as expected, error decreases for 

all data sources as the time interval increases. Second, accuracy improves for each of the three 

satellite models as the spatial and temporal resolutions are increased. Third, error exists even 

between two ground sensors that are in almost the same location (i.e., ground sensors have 1 

percent annual error). Fourth, SolarAnywhere High Resolution has only 10 percent error over a 

one minute time interval, 7 percent error over a one hour time interval, and 2 to 3 percent error 

on a one year time interval. 
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Figure 13: Average MAE of 4 Individual Locations 

 

 

2.4.3 Fleet of Locations 

As illustrated by the list of References, a number of studies have examined the issue of PV 

output variability. A consistent finding of these studies is that variability is reduced when PV 

systems are geographically dispersed. That is, variability is reduced as the number of systems 

increases across a sufficiently large geographic region. 

So far, this report has focused on the error associated with individual locations. While 

individual locations are of interest in some cases, there are certainly many other cases in the 

utility industry when users are most interested in the error associated with a set of locations. 

The rMAE analysis was repeated with the input data being the combined irradiance across four 

locations. The results are presented in Figure 14. A clear reduction in error due to combining 

locations can be seen by comparing Figure 14 to Figure 13. That is, the effect of geographic 

dispersion on reducing output variability reduction that has been observed by others is now 

also observed with regard to prediction accuracy: accuracy improves as a geographically 

diverse set of independent locations are combined. 
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Figure 14: MAE of 4 Locations Combined 

 

 

In order to demonstrate why this is occurring, a “worst day” analysis was performed. In 

particular, the “worst day of the year was selected (i.e., the day that had the highest MAE 

calculated using a one-day time period and one-minute time interval for any of the four 

locations). The results are illustrated in Figure 15. The top graph in the figure is a probability 

distribution of the daily MAE for all 4 sites and 365 days per year. As can be seen in the figure, 

the worst day of the year had 103 percent daily rMAE on a one minute basis. 

The black line in the figure points to the graph of the one minute GHI for January 30, 2011, at 

Site B, the worst day and worst site of the year. SolarAnywhere High Resolution clearly over 

predicted irradiance on this day. The prediction at the other three sites, however, was good. As 

a result, the combined error for the day is 33 percent. As shown by the red line in the top 

distribution figure, this was still the day that had the highest daily error, but it is much lower 

than the one site by itself. 
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Figure 15: Worst Day, Worst Site Analysis. 

 

  Site B Had Highest Daily Error on Jan. 30, 2011.  

  The 4 Location Average Reduces Effect. 

 

Furthermore, fleet error appears to be able to be approximated from average individual location 

error as follows. 
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where E[] is the expected value, MBE is the mean bias error, and N is the number of 

independent locations. This proposed relationship will have to be ascertained with a larger 

sample of data points, but it can be stated that the √  dependence is an inference of the 

reasonable assumptions that errors at individual locations are not correlated. This follows along 

the Strong Law of Large Numbers that states that the average of a sequence of independent 

random variables having a common distribution will, with probability 1, converge to the mean 

of that distribution as the number of observations goes infinity [21]. 

2.5 Summary 

Results suggest that, first, satellite-based irradiance has annual error comparable to ground 

sensors. Thus, satellite data may perform as well as ground data for plant siting at a fraction of 

the cost plus the benefit of long-term data streams. It should be noted that ground sensors, even 
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well maintained, produce considerably more invalid data points than the satellite (a ratio of one 

hundred to one in the present study), and that the satellite data were key in detecting these 

erroneous data points (particularly when both redundant sensors were inaccurate at the same 

time).  

Second, high resolution satellite-based irradiance has 10 percent one minute error for a single 

location, making it suited to provide the basis for data required to perform high penetration PV 

studies.  

Third, accuracy improves predictably due to the benefit of geographic dispersion. That is, the 

effect of geographic dispersion on reducing output variability reduction that has been observed 

by others is now also observed with regard to prediction accuracy. 
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Chapter 3:  
PV Fleet Simulation 

3.1 Introduction 

This chapter describes how to generate time series PV fleet production data for consumption by 

CAISO processes. This required the following: 

 Interact with the CAISO to develop a data format specification for time series PV fleet data 

that will be compatible with their system expectations. 

 Design, test, and implement a method to produce a set of synthetic PV fleet performance 

data. 

 Create time series data streams, deliver to the CAISO for their use, and assist the CAISO in 

analyzing, using, and implementing this data as required. 

3.2 Forecast Requirements 

The first step of the process was to interact with the CAISO to develop data format 

specifications for time series PV fleet data that will be compatible with their system 

expectations. The CAISO and CPR met on several occasions to finalize this information. Table 6 

and Table 7 present the CAISO’s near-term and long-term requirements. The requirements are 

classified according to the Real-Time Power Dispatch (RTPD) market and the Day-Ahead 

market. 

The requirements specified how often the forecasts needed to be updated, when the forecasts 

were due, forecast time interval, forecast time horizon, and whether or not the forecasts should 

include uncertainty bounds (i.e., confidence intervals). The goal under this project is to satisfy 

the CAISO’s near-term requirements. Subsequent work will satisfy their long-term 

requirements.  

 

Table 6: Near-Term CAISO Requirements 

Market Update 
Frequency 

Forecast Due Forecast 
Interval 

Forecast 
Horizon 

Include 
Uncertainty? 

Real-Time 
Power Dispatch 

30 min Every 30 
minutes 

15 min 12 hours No 

Day-Ahead Daily 7:45 am of day 
before 

1 hour 6 days No 
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Table 7: Long-Term CAISO Requirements 

Market Update 
Frequency 

Forecast Due  Forecast 
Interval 

Forecast 
Horizon 

Include 
Uncertainty? 

Real-Time 
Power Dispatch 

15 min Every 15 
minutes  

15 min 12 hours Yes 

Day-Ahead Hourly 45 min past 
hour  

1 hour 6 days Yes 

 

3.3 PV Fleet Simulation Method 

The second step was to design, test, and implement a method to simulate PV fleet performance 

data per the CAISO’s requirements listed in Table 6. Three components are required to simulate 

PV fleet power production (as illustrated in Error! Reference source not found.): 

1. Solar resource data. 

2. PV plant specification data. 

3. PV fleet simulation model. 

3.3.1 Solar Resource Data 

The first component that is required to simulate PV fleet power production is the solar resource 

data. The SolarAnywhere Enhanced Resolution data is used for the simulation for all of the 

plants in California. This database consists of solar resource observations produced every 30 

minutes based on satellite imagery for the state of California using a 1 km grid. Higher speed 

data observations are generated using these native images using a cloud motion vector 

interpolation approach. The cloud motion vector approach takes two consecutive images and 

infers cloud movement (i.e., speed and direction) based on a comparison of the two images. 

The SolarAnywhere Standard Resolution data is used for the simulation for the plants in 

Arizona. This database consists of solar resource observations produced every 60 minutes based 

on satellite imagery using a 10 km grid. 

Details of the solar resource data are described above. 

3.3.2 PV Plant Specification Data 

The second component that is required to simulate PV fleet power production is a set of PV 

system specifications. PV systems in California can broadly be categorized as being either 

metered or behind-the-meter. The key is which systems should be included. 

Validating simulated vs. measured data requires that measured data is available. As a result, 

the metered systems provide the basis for validation efforts. An earlier chapter described how 

the CAISO metered fleet consists of 46 PV plants. It also presented the capacity (MW-AC) of 

each system. The total capacity of this fleet is 959 MW-AC. 

Details of this data collection effort are described above. 
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3.3.3 PV Fleet Simulation Model 

The third component that is required to simulate PV fleet power production is a PV fleet 

simulation model. SolarAnywhere® FleetView™ is used for this task. 

One approach to simulating PV fleet output is to calculate average irradiance across the fleet 

and average capacity of the fleet and then to perform a single simulation. This approach, 

however, fails to capture the weather variability associated with specific locations because it 

artificially smooths fleet output. 

FleetView takes a much more detailed approach. Power production is simulated for every PV 

plant independently. The simulations from the individual plants are then summed to obtain 

fleet production. This approach captures site-specific resource variability. 

3.3.4 Rapid Calculations 

In addition to having three requirements to be able to produce the fleet predictions, the 

calculations need to be performed at a speed that satisfied the CAISO requirements. The 

SolarAnywhere FleetView software service was initially designed to provide forecast data 

across large geographic areas for a limited number of PV systems. The CAISO, however, 

required forecast data every 30 minutes for a large number of PV systems (currently at 130,000 

systems). As a result, the method of producing and delivering the data needed to be modified to 

accommodate the CAISO’s requirements. 

Two broad categories of modifications were required. One category was to identify 

inefficiencies in existing solar resource forecast software code and to implement code changes to 

speed processing. Another category was to migrate SolarAnywhere software solution from a 

single server application to a multi-server, cloud-based application. This was required in order 

to make the forecasting process scalable according to the number of PV systems. 

It initially required more than 30 minutes to produce forecasts. This was an issue because the 

CAISO needed a forecast every 30 minutes, but the forecast could not be completed in less than 

30 minutes. The forecast production time has now been reduced to less than 30 minutes. 

3.4 Time Series Data 

The next step was to create time series data streams, deliver the data to the CAISO for their use, 

and assist the CAISO in analyzing, using, and implementing this data as required. CPR began 

producing forecasts and posting them to a secure FTP site in January, 2013. CPR went through 

several months of testing to ensure that the data was reliably delivered. The CAISO has 

initiated the process of downloading the data.  

An Excel file is posted to the secure FTP site every half hour for the RTPD market. A file is 

posted every day for the Day-Ahead market. Each file contains three columns: Period Ending, 

Region, and Power (MW). Figure 16 presents the first several rows in an RTPD file that was 

produced on 5/9/2013 at 10:30. 
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Figure 16: Sample RTPD PV Fleet Forecast File 

 

 

3.5 Summary 

This chapter described how CPR is providing time series PV fleet production data for the 

CAISO. This included interacting with the CAISO to determine forecast data requirements, 

modifying the PV fleet power production simulation method in SolarAnywhere FleetView to 

accommodate these requirements, and creating the time series data. The next chapter validates 

simulated PV fleet power production in comparison to measured data provided by the CAISO. 
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Chapter 4:  
PV Fleet Simulation Validation 

4.1 Introduction 

This chapter describes the validation of simulated PV fleet production using measured data 

provided by the CAISO. This required the following: 

 Work with the CAISO to determine data availability, resolve time synchronization issues, 

and take steps necessary to ensure data integrity. 

 Obtain data and upload to the contractor’s data servers. 

 Perform analysis using methods previously used for similar United States data sources. 

4.2 Approach 

Validation requires simulated and measured data. The previous chapter discussed how the data 

was simulated using FleetView. The measured data was provided by the CAISO. The CAISO 

measures power production every four seconds for 46 PV plants. A 15-minute time interval is 

critical to the CAISO’s forecasting efforts above. Thus, the four-second measured PV power 

production was averaged to 15-minute data. 

4.3 Results 

4.3.1 Sources of Error 

Inaccuracies degrade the ability of the simulation to reflect measured performance. These 

inaccuracies can be grouped into three categories. 

1. Solar resource. 

2. PV modeling. 

3. PV plant performance issues. 

Solar resource inaccuracies include errors in historical or forecasted solar resource data. PV 

modeling inaccuracies refer to limitations in the PV fleet modeling algorithms. PV plant 

performance issues reflect errors that occur because the plant is not operating as expected.  

The effects of solar resource and PV modeling inaccuracies are fairly obvious. Inaccurate solar 

resource data (historical or forecasted) and/or PV fleet modeling algorithms clearly limit the 

simulation’s ability to reflect measured performance. 

PV plant performance issues are more subtle. Differences between simulated and measured PV 

production can still occur even if the simulation method perfectly predicts measured PV fleet 

power production for a fleet that is operating perfectly. Differences can occur if the actual PV 

fleet does not operate as expected due to system performance issues. That is, inaccuracies can 

occur that are unrelated to the fundamental simulation methodology. They are related to lack of 

incorporation of poor performance into the simulation. 

 



 

28 

4.3.2 PV Plant Performance Issues 

The first step of the evaluation, therefore, is to determine how to address PV performance 

issues. One option is to incorporate plant status into the simulation methodology. The 

simulation, for example, would reflect a capacity reduction if a plant was only operating at 50 

percent capacity. This option requires obtaining PV plant status information. This information, 

unfortunately, was unavailable for the CAISO fleet of PV systems. 

An alternative approach is to identify days when the individual plants had sub-par 

performance. These days and plants are then eliminated from the fleet simulation. This is the 

approach that was taken for this project. 

Fifteen-minute measured and simulated data were obtained for 46 CAISO metered PV plants 

from March 10, 2013 to April 19, 2013. The time series data were compared for each of the plants 

individually. The data was visually examined to assess days when the PV plant was either not 

operating or was clearly underperforming. Figure 17 and Figure 18 present the results of the 

analysis for two of the 46 plants. The red and blue lines correspond to simulated and measured 

data. The shaded areas represent days with plant performance issues. The dashed line 

corresponds to the daily rMAE. Figure 17 corresponds to a plant that operated well during the 

whole time period. Figure 18 corresponds to a plant that had significant operational issues. 

 

Figure 17: Example of PV Plant that Operated as Expected 
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Figure 18: Example of PV Plant with Possible Performance Issues 

 

 

This process was repeated for all of the plants. Figure 19 summarizes plant performance for all 

46 plants. The y-axis corresponds to the plant number and the x-axis corresponds to the date. 

Blue corresponds to normal operation and red corresponds to performance issues. The figure 

suggests that the PV fleet experienced a significant number of performance issues over the six-

week analysis period. 

 

Figure 19: Summary of Performance Issues for All Metered Plants 
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4.3.3 PV Fleet Simulations 

4.3.3.1 Time Series Data 

Simulations were performed using FleetView with and without plant filtering results from the 

previous section. Figure 20 presents PV fleet output without filtering. Figure 21 presents PV 

fleet output with filtering. A comparison of the two figures illustrates the improvement in 

accuracy by taking PV plant performance issues into consideration. 

 

Figure 20: PV Fleet Production before PV Performance Filtering 

 

 

Figure 21: PV Fleet Production after PV Performance Filtering 
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4.3.3.2 Simulated vs. Measured Data 

An alternative way to present the data in Figure 20 is to plot simulated vs. measured average 

power for each 15-minute interval. Figure 22 presents the data in this manner. All of the blue 

markers would be on the red line if simulated and measured results matched perfectly. The top 

of the figure corresponds to the “Initial” case of PV fleet output without PV performance 

filtering (it corresponds to Figure 20). A consistent power-related bias can be observed.  

This bias can be reduced by applying the tuning curve presented in Figure 23. The “Tuned” 

case is presented in the center of Figure 22. Significant scatter, however, can still be observed. 

This can be reduced by filtering the data for PV performance using the filtering from the 

previous section.  

The “Tuned & Filtered” case is presented in the bottom of Figure 22. There is a good alignment 

between simulated and measured data after making the tuning and filtering adjustments.  

 

Figure 22: Simulated vs. Measured Average 15-Minute Power for CAISO Metered PV Fleet 
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Figure 23: Power-Based Simulation Tuning 

 

 

4.3.4 Relative Mean Absolute Error 

The final step of the analysis is to calculate the rMAE. The time series data were evaluated over 

the approximately six-week time period for the 15-minute time interval data. Figure 24 presents 

results for three cases: Initial, Tuned, and Tuned & Filtered. These cases correspond to the 

results presented in Figure 22. Results show that the Initial, Tuned and, Tuned & Filtered cases 

have 7.2, 5.2, and 3.1 percent rMAE. 

Several observations can be made based on these results. First, overall, FleetView PV power 

modeling is pretty accurate. There is, however, room for improvement. In particular, improving 

the inverter power curve model for individual PV systems will substantially improve 

simulation results (i.e., the improvement identified by applying the tuning).  

Second, there is a substantially negative effect due to poorly performing plants even after the 

PV fleet model has been tuned. Accurately representing plant status reduces error by more than 

40 percent.  
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Third, three percent rMAE can be achieved for 15-minute time interval data using a well-tuned 

model that accounts for poor PV plant performance. This requires that: (1) accurate location-

specific solar resource data is supplied; (2) correct PV specifications are used; (3) the inverter 

power curve is properly represented (i.e., the simulation is tuned); and (4) actual PV plant 

status is incorporated into the simulation.  

 

Figure 24: Total rMAE 

 

 

It is useful investigate the error on a daily basis in addition to an analysis over the entire time 

period. Figure 25 and Figure 26 presents the daily rMAE for the 15-minute time interval before 

and after tuning the model. The blue and red colors correspond to simulation error and PV 

plant performance error respectively. PV plant performance error is estimated by subtracting 

simulation error with and without filtering. The figure shows that rMAE varies from day to 

day. While absolute error increases on some of days, rMAE tends to be higher on low energy 

days. This is because the rMAE calculation is defined as absolute error divided by measured 

energy.  
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Figure 25: Daily Relative MAE Using 15-Minute Time Interval before Tuning 

 

 

Figure 26: Daily Relative MAE Using 15-Minute Time Interval after Tuning 

 

 

4.3.5 Sample Days After Tuning and Filtering 

It is useful to compare simulated and measured data for a range of days after tuning and 

filtering. Figure 27, Figure 28, and Figure 29 present measured and simulated PV fleet 

production. Figure 27 corresponds to a clear day. Figure 28 corresponds to a day with PV 

performance issues. Figure 29 corresponds to a day with variable weather and PV performance 

issues. 
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Several observations can be made. First, tuning the simulation model increases accuracy for all 

days. Second, modeling on a clear day is very good with a rMAE of less than 2 percent. Third, 

filtering for PV plant performance issues can be very important; rMAE was reduced from 20 

percent to 4 percent on one particular day. Fourth, simulated data tracks measured data fairly 

well even for the worst performing day.  

 

Figure 27: PV Fleet Production on Clear Day  
In

it
ia

l 

 

T
u

n
e
d

 

 

T
u

n
e
d

 &
 F

il
te

re
d

 

 

    (March 12, 2013) 



 

36 

Figure 28: PV Fleet Production on Day with Production Issues  
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Figure 29: PV Fleet Production on Variable Weather Day with Production Issues  
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Chapter 5:  
Conclusions and Future Research 

5.1 Conclusions 

CPR has developed a unique method to predict PV fleet power production. The method uses 

inputs of satellite-derived solar resource data and the design attributes and locations of PV 

systems. It combines these inputs with advanced algorithms to track cloud patterns to predict 

output. 

The objective of this project was to validate simulated PV fleet power production using 

measured PV fleet power production. This required: 

 Obtaining PV system specifications for all PV systems in California. 

 Obtaining solar resource data for the location of each PV system. 

 Obtaining measured PV power production data for a subset of the fleet of systems. 

 Screening the measured data for performance issues. 

 Simulating PV fleet output using SolarAnywhere FleetView. 

 Comparing measured and simulated results. 

Results suggest that 3 percent Relative Mean Absolute Error (rMAE) can be achieved for 15-

minute time interval data given that: 

 Accurate location-specific solar resource data is supplied. 

 Correct PV specifications are used. 

 The PV simulation model is properly tuned. 

 PV plant operating status is reflected in the simulation to account for poor performance. 

Total error can be caused by solar resource inaccuracies, PV simulation model inaccuracies, and 

PV plant performance issues. Results also suggest that total error was over 7 percent if the 

model was not tuned and PV plant operating status was not reflected in the simulation. 

This research also has the following benefits to CAISO: 

 Prediction of behind-the-meter PV fleet performance for 1st time 

 Fleet forecasts categorized by CAISO’s five regions for both behind-the-meter and 

metered PV 

 Gained confidence in CPR’s PV fleet simulation accuracy 

 Gained understanding into performance of metered PV plants 

 Positioned to begin evaluation of integration of PV fleet forecasts into load forecasts 

 PV fleet prediction tools available to support for PV fleet forecasting 

 PV fleet prediction tools available to produce data required for high PV penetration grid 

planning 
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5.2 Future Research 

There are several areas of future research.  

 Improve inverter power curve modeling to reduce the need for tuning. 

 Implement SolarAnywhere Enhanced Resolution data in Arizona to increase solar 

resource data resolution for all plants (i.e., Arizona plants, which represent almost half 

of the measured fleet capacity, currently use Standard Resolution data). 

 Expand the analysis to incorporate solar resource forecast error. 

 Incorporate PV plant performance status into the simulation to reduce total error. 

 Continue validation efforts, especially during worst case conditions, to provide 

guidance as to how to use the data and to identify areas for improvement. 

 Expand the analysis to probabilistic forecasting. 

 Continue efforts to integrate results in to the CAISO processes.  
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Appendix A:  
Reporting of Relative Irradiance Prediction Dispersion 
Error 

Introduction 

Statistical methods for calculating and quantifying error have long been established across a 

wide range of sciences and industries. Whether quantifying the accuracy of an electrical meter, 

the tolerance of a precision part, or the expected range of forecasted temperatures, the methods 

for determining error are generally accepted. It is somewhat surprising, then, that these same 

methods have proved confusing and sometimes misleading when applied to commonly used 

diurnal quantities in the solar energy field.  

Error calculations related to solar irradiance and PV power production, for example, are 

complicated by observations taken during nighttime and other low solar conditions. These 

conditions are often of little interest to the solar researcher, but they do cover the majority of 

time over a multi-day test period. Since these observations are subject to very low absolute 

error, their inclusion and weighting have a large impact on overall relative error. 

As part of recent European and International Energy Agency (IEA) tasks [22], [23], a group of 

experts have developed recommendations for reporting irradiance model accuracy [24], [25]. 

Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Kolmogorov Smirnoff Integral 

(KSI) are the three key recommended validation metrics. These respectively provide a measure 

of model’s dispersion (RMSE), overall bias (MBE), and ability to reproduce observed frequency 

distributions (KSI).  

In many contexts, however, relative error is more commonly desired than absolute error. While 

the IEA tasks developed recommendations for absolute errors, they have not developed 

recommendations on how to calculate error in percentage terms, aside from using the 

informally (but not universally) accepted approach of dividing RMSE by the day-time mean of 

the considered irradiance. This is unfortunate because users in the utility industry desire to 

understand error in relative terms rather than absolute terms.  

A simplified reporting approach for the %KSI metric was proposed in a recent article [26]. The 

present note focuses on the relative dispersion error metrics (RMSE and MAE) with the 

objective of setting a standard for reporting these metrics in the industry and research 

community to facilitate comparison between forecast models.  

Forecast model error also depends on meteorological conditions, forecast horizon, and 

averaging interval. There is not an attempt to create a metric that makes forecasts comparable 

across these dependencies. Rather, the focus is on which metric should be chosen to compare 

two forecasts at the same site, same forecast horizon, and same averaging interval. This 

discussion only focuses on methods concerned with expressing the relative error between two 

time series with a single statistic.   
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It should be remembered that methods that calculate relative or absolute error for each value in 

the time series may be more useful in practice, since they can uncover patterns that are 

obscured when the error for time series prediction is lumped into a single statistic. 

Absolute errors 

Root Mean Square Error (RMSE) 

The RMSE is defined to be the square root of the sum of the squares of the difference between 

modeled and reference irradiances using some time interval (e.g., hourly) over some time 

period (e.g., one year) divided by the number of observations. 
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(3) 

 

where   
     is the test irradiance at time t,   

   
 is the reference irradiance at time t, and N is the 

number of observations. 

One ambiguity with the RMSE calculation (as well as all other error calculations that involve 

any sort of averaging) is that a decision is required as to whether or not to include all values. 

The prevalent practice in the solar resource community has been to only include daytime 

values, sometimes filtered by solar zenith angle less than 80˚ to avoid shading and/or sensor 

cosine response issues under low sun angles.  

Mean Absolute Error (MAE) 

The MAE is defined to be the sum of the differences between modeled and reference irradiances 

using some time interval over some time period divided by the number of observations. 

    
∑ |  
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 (4) 

Relative (Percent) Errors 

Quantifying relative error requires that absolute error (i.e., RMSE or MAE) be divided by a 

normalizing number. To emphasize, the normalization is not carried out for each   
     and 

  
   

pair, but rather using a single number representative of typical irradiances during the entire 

time series. Three possible candidates to use in the denominator to calculate Percent Error are:  

 Average irradiance (Avg.). 

 Weighted average irradiance (Weighted Avg.). 

 Maximum nominal irradiance (Capacity). 

Average 

Average irradiance equals the sum of the irradiance values divided by the number of 

observations. 
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Weighted Average 

Weighted Average irradiance may be used to assign more importance to high-level irradiance 

observations. It is defined to be the sum of the irradiance values weighted by a factor. 
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 (6) 

One meaningful way to weight the irradiance is by its magnitude. That is, let 
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Substituting Equation (7) into Equation (6) results in a Weighted Average of  

                 
∑ (  
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 (8) 

Unlike for the simple average, the day-time weighted average equals the 24-hour weighted 

averages since the weight of night-time points is zero. 

Capacity  

A third option is the peak irradiance or Capacity (C). For global horizontal irradiance, for 

example, the Capacity would be 1,000 W/m^2. 

The wind industry has adopted this approach of normalizing to installed generating capacity 

for the reporting of output prediction errors [27]. 

Percent Error Calculation Methods 

With two measures of dispersion (RMSE and MAE) and three normalizing means, there are six 

possible methods to calculate Percent Error. These methods are summarized in Table 8.   
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Table 9 presents the mathematical definitions used to calculate Percent Error by combining 

Equations (3) through (8) (see appendix for the detailed derivations). 

 

Table 8: Possible Percent Error Calculation Methods 

 RMSE MAE 

Average RMSE/Avg. MAE/Avg. 

Weighted Average RMSE/Weighted Avg. MAE/Weighted Avg. 

Capacity RMSE/Capacity MAE/Capacity 

 

Table 9: Mathematical Definitions of Percent Error Methods 

Percent Error Method Definition 
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24 Hours vs. Daytime 

The effect of including 24 hours in the analysis vs. only including daytime values can be 

analyzed using the equations presented in   
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Table 9. Total Error (i.e., √∑ (  
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    or ∑ |  

    
   

   
| 

   ) remains unchanged by including 

night-time values.  However, Absolute Error (RMSE or MAE) is affected by the distinction since 

the results are obtained by dividing Total Error by the number of considered points. Percent 

Error is further affected by the daytime vs. 24-hour distinction since the normalizing means are 

different. 

Table 10 summarizes the impact of the distinction on the selected error reporting metrics. It 

shows that Percent Error calculated using RMSE/Avg. method increases from 24 hour to 

daytime, the MAE/Avg. is unchanged, and Percent Error calculated using the other four 

methods decreases.  

In all of the changed scenarios, the change is a function of the fraction of daytime hours. For 

example, if there are 4,380 daytime hours in a 12-month test period, the fraction Daytime Hours 

is 0.5. If night time hours are considered, Percent Error calculated using RMSE/Avg. will increase 

by 41 percent (√
 

   
), Percent Error calculated using RMSE/Weighted Avg. will decrease by 29 

percent (√   ), and Percent Error calculated using MAE/Weighted Avg. or MAE/Capacity will 

decrease by 50 percent. The only method independent of nighttime hours is the MAE/Avg. 

method. 

 

Table 10: Ratio of Percent Error Using All Hours to Percent Error Using Daytime Hours 

Percent Error Method Ratio of Daytime to 24h Percent Error 

 √
          

              
 

100% 
(No change) 

√
              

          
 
              

          
 

RMSE/Avg.     

RMSE/Weighted Avg.     

RMSE/Capacity     

MAE/Avg.     

MAE/Weighted Avg.     

MAE/ Capacity     

 

Application Example 

An effective way to compare and contrast the six possible methods is to quantify results using 

an actual irradiance data set. Hourly satellite-derived global horizontal insolation (GHI) data 

was obtained for Hanford, CA, from January 1, 2010 to December 31, 2010. The reference data 

are from a high-quality ISIS ground site [28]. The modeled data are from a satellite-based 

irradiance service [14].  

Figure 30 plots one year’s worth of hourly modeled data vs. measured data. A perfect match 

would occur if all blue dots were on the red line. As can be seen from the figure, the selected 

modeled data are a good visual match to the reference data.  
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Figure 30: Irradiance Data for Hanford, CA, 2010 

 

 

Figure 31 presents Percent Error for the six methods using the two scenarios of All Hours (24 

hours per day) and Daytime Hours only. The “All Hours” scenarios are represented by the 

black bars. The “Daytime Hours” are represented by the white bars. Several observations can be 

made based on the figure: 

 Percent Error ranges by a factor of more than 10 depending upon which method and 

scenario is selected 

o RMSE/Avg. method using nighttime values results in a 17.0 Percent Error. 

o MAE/Capacity method using nighttime values results in 1.5 Percent Error. 

 The exclusion/inclusion of nighttime values changes results for five of the six definitions; 

Percent Error is lower for one case and higher for four cases. 

 Only the MAE/Avg. Percent Error definition is independent of the inclusion of nighttime 

data. 
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Figure 31: Comparison of Error Results for Six Methods Using “All Hours” and “Daytime Hours” 
for Hanford, CA, 2010 

 

 

Threshold Dependence 

The Irradiance Threshold is the value below which data are excluded. Use of a threshold is 

relevant because while the current practice is to exclude night-time values, the industry lacks a 

precise definition of what is night-time. Is night-time when irradiance is 0 W/m^2, 0.1 W/m^2, 1 

W/m^2? 

The 24-hour and daytime scenarios are specific threshold points, occurring respectively when 

irradiance is larger than, or equal to a zero Irradiance Threshold for the former and above the zero 

Irradiance Threshold for the latter. 

Figure 32 presents the percent of solar energy that occurs below a given Irradiance Threshold. It is 

interesting to note that much of the collectable energy resides above significant threshold levels. 

For example, the dashed line shows that GHI observations less than an Irradiance Threshold of 

250 W/m2 correspond to only 8 percent of the annual GHI at Hanford, CA in 2010. 
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Figure 32: Energy Distribution of Irradiance Data for Hanford, CA, 2010 

 

 

Figure 33 presents Percent Error as a function of Irradiance Threshold for all six methods. Several 

observations can be made based on the figure. 

 All Percent Error definitions based on RMSE converge to the same result as the Irradiance 

Threshold increases. 

 All Percent Error definitions based on MAE converge to the same result as the Irradiance 

Threshold increases. 

 RMSE/Weighted Avg. results are similar to MAE/Avg. when “Daytime Hours” are 

included. 
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Figure 33: Comparison of Error Results for Hanford, CA, 2010 

 

 

RMSE vs. MAE 

Aside from the Percent Error reporting issue, it is worthwhile to explore the question whether 

the RMSE or the MAE is the most appropriate method to report dispersion error. 

The main difference between the two is that the RMSE is driven by the square of the differences 

unlike the MAE. As a result, outliers are considerably more influential on the reported accuracy 

when using the RMSE metric. In the above example the addition of four far outliers to the data 

set (representing 0.1 percent of the data samples) increases the RMSE by a factor of 1.12, but 

only increases the MAE by a factor of 1.04. 

Discussion  

Table 4 summarizes the comparative observations made above using a subjective grading for 

the attributes of each relative dispersion error reporting method. The attributes we considered 

include: 

 Whether the method is commonly accepted, 

 Whether it is simple to understand 

 Whether it depends on the 24-hr vs. daytime only distinction 

 Whether it depends on the data selection threshold 

 Whether it is affected by outliers 
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A grade of 0 to 2 is assigned to each method to represent its strength (2) or its weakness (0) with 

respect to a given attribute. 

 

Table 11: Subjective Evaluation of Relative Error Reporting Method. 

 

Commonly 
accepted 

Simple to 
understand 

Depends 
on night 

time 
Values 

Depends 
on 

selected 
threshold 

Affected 
by 

outliers 

Total 

RMSE/Avg. 2 2 0 0 0 4 

RMSE/Weighted Avg. 0 1 1 1 0 3 

RMSE/Capacity 2 2 1 1 0 6 

MAE/Avg. 1 2 2 1 1 7 

MAE/Weighted Avg. 0 1 0 1 1 3 

MAE/ Capacity 0 2 0 2 1 5 

 

The MAE/Avg. provides the best practical measure of relative dispersion error based on the 

selected evaluation criteria and the subjective evaluations. The MAE/Avg. is attractive in that it 

is independent of the number of observations and is simple to understand. The RMSE/Capacity 

method is also desirable because it is commonly accepted (the wind power industry has already 

adopted this method) and is simple to understand. 

The value of agreeing on a simple to calculate method has the benefit that multiple predictions 

and forecasts can be quickly evaluated and compared. Given that irradiance and PV power 

predictions and forecasts will be applied to a variety of applications (resource assessment, 

electrical grid operations and planning, etc.), it is not expected that the single statistic proposed 

here will necessarily be a complete measure of forecast quality. The authors, however feel that it 

is a good start towards promoting a standard metric in the industry.  

 



 

B-1 

Appendix B:  
Percent Error Calculations 

This appendix derives the Percent Error calculations based on the definitions of RMSE, MAE, 

Avg., Weighted Avg., and Capacity. 
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Appendix C:  
Half-hour Irradiance Data for Six CAISO Locations 
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Executive Summary 

Understanding the behavior and errors associated with the simulation of fleet-wide PV system energy 

production is a critical step towards facilitating increased PV penetration into California’s electricity 

system. Metered PV system data collected by the Sacramento Municipal Utility District (SMUD) provides 

a unique opportunity to evaluate the performance and errors observed during simulation of a fleet of 

more than 2,000 PV systems.  

This report presents the results of a six-month simulation of the SMUD fleet of PV systems.  

Results demonstrate an accuracy of 6.2 percent Mean Absolute Error relative to energy (rMAE) when all 

systems and all days are included. The error was reduced to 4.5 percent rMAE for a subset of well-

behaved PV systems. Results further improve to 5.4 and 3.5 percent rMAE, respectively, when partly 

cloudy day conditions are removed. These results demonstrate that accurate simulations of a large fleet 

of PV systems are obtainable. 

Improvement in the underlying PV simulation methodologies by further inspection of simulated and 

measured data at the hourly and sub-hourly level will improve accuracy. Additional work to better 

estimate PV modeling derate factors and to identify better ways to clean measured data and to identify 

and rectify faulty PV system specifications will further improve results. 

A key next step of the work is to perform this analysis using forecasted rather than historical solar 

resource data. 
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Introduction 

Background 
It is challenging to obtain accurate estimates of photovoltaic (PV) system energy production. Factors 

such as irradiance, shading, soiling, and system configuration can greatly influence the performance of 

an installed PV system.  Figure 1 illustrates some of the challenges that must be addressed to obtain 

accurate production estimates of PV energy production. 

 

Figure 1: Depiction of several rooftop PV solar systems from the Folsom, CA area and associated 

challenges identified which, when improperly accounted for, can thwart accurate PV performance 

simulations. 

 

 

Understanding how accurately one can simulate existing PV system energy production is a critical step 

towards facilitating increased PV penetration into California’s electricity system. The California Solar 

Initiative (CSI) partially funded the development of an enhanced resolution satellite-based solar 
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resource database for the state of California. It is referred to as SolarAnywhere® Enhanced Resolution 

[1]. The database has a one-km spatial resolution and half-hour temporal resolution, using the native 

spatial and temporal resolution of the US geostationary satellites. This data set has been further 

expanded to have a one-km spatial, one-minute temporal resolution by applying intra-interval short-

term forecasting. It is referred to as SolarAnywhere High Resolution [1]. These data sets have the 

potential to provide the solar resource data required to address the PV simulation challenges described 

above.  

FleetView Power Prediction Method 
Clean Power Research (CPR) has developed the SolarAnywhere® FleetView™ software service to predict 

PV fleet power production. FleetView uses inputs of satellite-derived solar resource data and the design 

attributes and locations of PV systems. It combines these inputs with advanced algorithms to predict PV 

fleet power production as illustrated in Figure 2. 

 

Figure 2. PV fleet simulation procedure. 
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Objective 

The objective of this report is to validate FleetView simulation results using detailed measured PV 

production data from SMUD. This report compares the accuracy of the FleetView simulations with 

corresponding measured SMUD PV system data over a six-month time period (4/16/2012 - 10/10/2012) 

at hourly time intervals using a historical time perspective. Results are presented for both individual 

locations (i.e., single solar systems) and various ensembles of those locations (i.e., a fleet of solar 

systems). 
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Validation Definition 

Accuracy validation often means different things to different people. As such, it is useful to begin with a 

definition of how accuracy is quantified. 

Three fundamental questions need to be answered in order to provide a clear definition of how 

accuracy is quantified. 

1. What is the data source? 

2. What are the time attributes? 

3. What is the evaluation metric? 

Data Source 
The first step is to identify the data that is being evaluated. Options include irradiance data or PV power 

production simulated using irradiance data and other parameters. In addition, the analysis can be 

performed for individual locations or fleets (i.e., multiple locations).  

This report uses PV power data. The analysis is performed for both individual locations and fleets. 

Time Attributes 
The second step is to specify the required time attributes. These include: 

 Time period: total amount of data included in the analysis. This can range from a few minutes to 

many years. 

 Time interval: how the data in the time period is binned. This can range from a few seconds to 

annually. For example, if the time period is one year and the time interval is one hour, the time 

period would be binned into 8,760 time increments. 

 Time perspective: when the predicted observation is reported. This can range from historical 

(backward looking) to forecasted a few hours ahead to forecasted multiple days ahead (forward 

looking). 

This report uses time attributes of historical data for a six-month time period for hourly time intervals. 

Evaluation Metric 
The third step is to select the evaluation metric. Mean Absolute Error (MAE) relative to available energy 

has been shown to be a good method to measure relative dispersion error (see [5] and [15] for details). 

This is referred to as the relative MAE or rMAE. rMAE is defined to be the sum of the absolute error 
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between simulated and measured energy for each time interval over the time period and divided by 

total available energy. Appendix A illustrates how to calculate rMAE. 
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on the clear day as on the cloudy day (10 kWh vs. 5 kWh). According to Equation ( 1 ), rMAE is 10 

percent for the clear day while it is 20 percent for the cloudy day. 
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Approach 

Data Set Correlation 
SMUD provided historical PV data for 2,550 distinct PV systems. The data contained a timestamp, 

measured energy production, duration of the measurement (time increments from 5 minutes up to 

hourly), and the system’s Distributed Generation number (DG number). 

PowerClerk® is used as the primary record for all PV systems in SMUD’s service territory. PowerClerk 

contains detailed system specifications, including inverter type and quantity, PV module type and 

quantity, array tilt, azimuth orientation, and shading. PowerClerk identifies each system by its DG 

number. 

The measured production data set and system specifications data set were linked using the DG number. 

The systems were assumed to be the same if the DG numbers matched. Random spot checks confirmed 

this was a valid assumption. 

Matches were obtained for 2,338 of the 2,550 PV systems (i.e., 92 percent of the systems). No DG 

number match could be found in PowerClerk for approximately 212 of the systems.  

PV Production Simulation 
Hourly energy was estimated by performing hourly simulations  for each system using FleetView by 

combining system specifications with the SolarAnywhere Enhanced Resolution (1km) hourly data that 

corresponded to the system’s latitude/longitude. (Note: performing the simulation using two half-hour 

observations rather than one hourly observation would probably improve accuracy). 

Measured data that contained sub-hourly time intervals were converted to hourly time intervals.  

Simulated and measured data were time-correlated (i.e., matched up by date and time). Records were 

discarded where either the simulated or measured data was missing. 

Data Quality Issues 
It was determined that some of the measured data did not properly time-correlate with the simulated 

data. This was corrected by shifting the measured data backward or forward up to 60 minutes in 15 

minute intervals (-60,-45,-30, -15, 0, +15, +30,  +45,+60). rMAE was calculated for each time shift. The 

time shift that resulted in the lowest rMAE was assumed to be the most correct for the measured data. 

Figure 3 illustrates this measured data time shift procedure for one day for one system. 
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Figure 3: Illustration of CPR's measured data time shift correction process (one hour in this case). 

Measured power is individually checked for spurious time shifts for each production system in the 

SMUD PV fleet. 

 

 

Site-specific tuning was applied to PV simulation results using CPR's dynamic tuning process once the 

simulated and measured data were time-correlated over the period of examination. A scale factor was 

selected that minimized certain error characteristics. Figure 4 illustrates the results of the dynamic 

tuning process for one day for one system. 

 



 9 APPENDIX 2 

Figure 4: Illustration of CPR's dynamic tuning methodology. Simulated power is uniquely tuned (down in 

this case) for each production system in the SMUD PV fleet. 
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Results 

Individual PV Systems 
This section presents results for two individual systems: a well characterized PV site simulation and a 

challenging PV site simulation. 

Well-Characterized PV Site Simulation 

First, consider a well-characterized PV site simulation. This system (RR-00201) is a residential PV solar 

installation consisting of thirty-two Evergreen PV solar modules and one SMA power inverter. It has an 

CEC-AC System Rating of 5.186 kW. A dynamically-derived scaling factor of 0.96307 was applied to this 

site for final PV production tuning purposes.  

Figure 5 presents examples of the hourly simulated and measured production data from this site. Clear 

day simulations are handled well. Cloudy day simulations exhibit higher error due to the challenge of 

accurately predicting ground irradiance under cloudy conditions. Figure 6 presents the daily rMAE over 

the 177 day observation period. Higher daily rMAE spikes during this period are associated with the 

cloudy day simulations.  

Figure 7 further clarifies the cloudy vs. clear day simulation challenges by breaking down the hourly 

simulated vs. observed statistics in: (a) all conditions; (b) clear day conditions; and (c) cloudy day 

conditions. Significantly more scatter is clearly visible under cloudy day conditions.  

 

Figure 5: Simulated (red line) and observed (blue line) production at the RR-00201 site over a four day 

period in August. August 18th shows production on a partly cloudy day.  
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Figure 6: Daily rMAE statistics for site RR-00201 over the observation period from 4/16/2012 - 

10/10/2012. Higher rMAE spikes are associated with cloudy days during the observation period. 

 

 

Figure 7: Scatter plot of simulated vs. measured hourly energy production for site RR-00201 from 

4/16/2012 - 10/10/2012 for: (a) all day conditions; (b) clear days; and (c) and cloudy days. 
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Table 1 presents error statistics for this single system over the six-month period (4/16/2012-

10/10/2012). Overall rMAE is 4.9 percent during this observational period under all conditions. Error 

drops to 3.3 percent when only clear days are included due to the exclusion of higher error prone cloudy 

days. Error increases to 13.6 percent for cloudy days.  

 

Table 1: rMAE for site RR-00201. 

 Clear Days Cloudy Days All Days 

rMAE 3.3% 13.6% 4.9% 

Ave Daily Energy 34.5 kWh 28.1 kWh 33.3 kWh 

Number of Days 145 days 32 days 177 days 

 

Challenging PV Site Simulation 

Next, consider a challenging PV site simulation. This system (RR-01452) is a residential PV solar 

installation consisting of nine Sharp PV solar modules and one Power-One power inverter. It has an 

overall CEC-AC System Rating of 3.290 kW. A dynamically-derived scaling factor of 0.97615 was applied 

to this site for final PV production tuning purposes. 

Figure 8 presents hourly simulated and measured production data for this site. The hourly PV 

simulations show significantly more error in the morning than during the afternoon. This systematic 

error in simulation (in the form of over predication) is better illustrated in Figure 9. The hourly MBE 

averaged over the entire production period has a significant systematic bias present during mid-

morning. This corresponds to the mismatch in simulated and measured production illustrated in Figure 

8. This over-prediction is most likely due to improper system shading specifications provided to 

FleetView simulation software. Further evidence of the shading influence can be seen in Figure 10 by 

the gradual upward trend in daily MAE as one moves later in the observation period when the sun is 

lower in the sky and shading effects are increased. Figure 11 further clarifies the cloudy vs. clear day 

simulation challenges by breaking down the hourly simulated vs. measured statistics in: (a) all 

conditions; and (b) clear day conditions. Both figures show significant scatter due to the miss-

characterized morning simulations and further illustrate the challenges inherent to rooftop PV 

simulations.  
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Figure 8: Example simulated (red line) and measured (blue line) production at the PC RR-01452 site over 

a four day period in September. Significant over prediction in the simulations can be seen in the morning 

hours. August 5th shows comparisons on a mostly cloudy day.  
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Figure 9: Hourly-averaged MBE measured over the observation period from 4/16/2012 - 10/10/2012. 

Note significant bias present at 9 AM due to mischaracterized PV system specifications. 

 

 

Figure 10: rMAE per day statistics for site RR-01452 over the observation period from 4/16/2012 - 

10/10/2012. Higher daily MAE values are associated with cloudy days during the observation period. 
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Figure 11: Scatter plot of simulated vs. measured hourly energy production for site RR-01452 from 

4/16/2012 - 10/10/2012 for all day conditions (a) and clear days (b). 

 

 

Table 2 presents error statistics for this single system over the six-month period (4/16/2012 - 

10/10/2012. Overall rMAE is 11.1 percent during this observational period under all conditions. This 

error drops to 9.7 percent when only clear days are included due to the exclusion of higher error prone 

cloudy days which exhibit 18.8 percent error on their own.  

 

Table 2. rMAE for site RR-01452. 

 Clear Days Cloudy Days All Days 

rMAE 9.7% 18.8% 11.1% 

Ave Daily Energy 20.5 kWh 16.6 kWh 19.8 kWh 

Number of Days 145 days 32 days 177 days 
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Fleet of Systems 

This section presents results based on the fleet of systems. 

Fleet of All PV Systems 
CPR completed successful simulations of 2,338 SMUD PV systems of which 132 systems were excluded 

due to various missing or erroneous measured data issues. Results from the 2,206 remaining PV system 

simulations are presented here.  

The time shift correction (illustrated in Figure 3) was applied to the measured data and the dynamic 

tuning analysis procedures (illustrated in Figure 4) was applied to simulated results for each PV system.  

Figure 12 presents the distribution of time shift analysis results for all measured PV system. The majority 

of systems required little or no time correction.  

 
Figure 12: Distribution of time shift corrections applied to all locations (2206) derived from the six 

months of simulated vs. measured production data. 

 

 

The dynamic tuning methodology was applied to each PV system simulation. The distribution of results 

is presented in Figure 13. While the peak in scaling factors applied is centered about zero, there is strong 

asymmetry present towards the downscaling side of the distribution. This unevenness in the distribution 

is likely due to influences which tend to lead to PV system underperformance. These effects can include 

system soiling, module mismatch and degradation, and enhanced rooftop-related temperature losses. 
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Figure 13 suggests that, in practice, it is more common for a PV system to underperform than to over 

perform.  

Figure 13: Distribution of dynamic scaling factors applied to all locations (2206) derived from the six 

months of simulated vs. measured production data. 

 

 

Figure 14 presents several days of the aggregate fleet hourly simulation and measured production data 

for all systems. Overall, the fleet PV simulations line up with production better than at the individual 

level due to system wide smoothing effects.  As noted before, simulations for clear days tend to line up 

better with measured data than those for cloudy days. The daily rMAE statistics in Figure 15 confirm that 

there is lower error on sunny days. There is also less error observed on cloudy days due to aggregating 

of fleet production.  

Figure 16 presents the hourly-averaged MBE. It suggests that at a fleet-level the simulations tend to 

slightly over predict energy during the morning and late afternoon timeframes while under predicting 

energy during the peak sunshine part of the day. It is likely that this can be corrected through 

improvements to the inverter power curve modeling. 

Figure 17 illustrates the cloudy vs. clear day simulation aspects of the fleet simulations by breaking 

down the hourly simulated vs. measured statistics in: (a) all conditions; (b) clear day conditions; and (c) 

cloudy day conditions. The systematic morning/later afternoon over prediction and midday under 

prediction tendencies are well illustrated here.  
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Figure 14: Example simulated (red line) and measured (blue line) production for all systems (2206) over 

a five day period in May. May 25-26 illustrate comparisons on a partly cloudy days. 

 

 

Figure 15: Aggregate MAE per day for all 2,206 systems from 4/16/2013 - 10/10/2013. The spikes in 

MAE are associated with cloudy day conditions. 
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Figure 16: MBE by hour for all 2,206 systems. The overall tendency is towards a morning and late 

afternoon over prediction of energy with a slight under prediction of energy during the peak of the day. 

 

 

Figure 17: Scatter plot of simulated vs. measured hourly energy production for all 2,206 systems from 

4/16/2012 - 10/10/2012 for all day conditions (a), clear days (b) and cloudy days (c). 

 

 
Table 3 presents error statistics for the fleet of 2,206 systems over a six-month period from 4/16/2012 - 

10/10/2012. Overall rMAE is 6.2 percent during this observational period under all conditions. This error 
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drops to 5.4 percent when only clear days are included due to the exclusion of higher error prone cloudy 

days which exhibit 11.1 percent error on their own.  

 
Table 3: rMAE for all 2,206 systems. 

 Clear Days Cloudy Days All Days 

rMAE 5.4% 11.1% 6.2% 

Ave Daily Energy 185.8 MWh 143.9 MWh 178.2 MWh 

Number of Days 145 days 32 days 177 days 

 

Fleet of Well-Behaved PV Systems 
Further full fleet PV system simulation results are presented now. PV systems were removed with 

reported six-month MAE statistics higher than 10 percent to filter out some of the noise present in the 

fleet simulation process. This reduced the simulation pool to 1,102 systems.  

Figure 18 presents examples of the trimmed down aggregate fleet hourly simulation and measured 

production data. Good partly cloudy day alignment can be see with mostly cloudy days still presenting 

challenges. The daily rMAE statistics in Figure 19 confirm the presence of lower error on sunny days with 

less error also observed on cloudy days due to the aggregation of fleet PV production.  The highest 

noted daily rMAE error day (May 3) is presented in Figure 18. Heavy overcast cloud conditions 

dominated the SMUD-footprint region on May 3 which resulted in lower energy simulations due to the 

under prediction of surface irradiance.  

The improvement in fleet error statistics is further illustrated in the hourly-averaged MBE presented in 

Figure 20. There is less morning and afternoon error while the previously noted midday under prediction 

error almost disappears. Figure 21 further illustrates the cloudy vs. clear day simulation aspects of the 

fleet simulations by breaking down the hourly simulated vs. measured statistics during: (a) all 

conditions; (b) clear day conditions; and (c) cloudy day conditions. 
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Figure 18: Example simulated (red line) and measured (blue line) production for 1,102 well-behaved 

systems over a four day period in May. May 1, 2 and 4 are partly cloudy days. May 3 is a heavy overcast 

day on which the highest measured daily MAE occurred during this observation period. 

 

 
 

Figure 19: Aggregate MAE per day statistics for well, behaved systems (1102) over the observation 

period from 4/16/2012 - 10/10/2012. Higher daily MAE values are associated with cloudy days during 

the observation period. 
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Figure 20: MBE by hour for 1,102 well behaved systems. The overall tendency is towards a morning and 

late afternoon over prediction of energy with a slight under prediction of energy during the peak of the 

day. 

 
 

Figure 21: Scatter plot of simulated vs. measured hourly energy production for 1,102 well-behaved sites 

from 4/16/2012 - 10/10/2012 for all day conditions (a), clear days (b) and cloudy days (c). 

 
 

 
Table 4 presents error statistics for the fleet of 1,102 well-behaved systems over a six-month period 

from 4/16/2012 - 10/10/2012. Overall rMAE is 4.5 percent during this observational period under all 
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conditions. This error drops down to 3.5 percent when only clear days are included due to the exclusion 

of higher error prone cloudy days which exhibit 10.0 percent error on their own. 

 
Table 4: rMAE for 1,102 well-behaved systems. 

 Clear Days Cloudy Days All Days 

rMAE 3.5% 10.0% 4.5% 

Ave Daily Energy 112.8 MWh 88.3 MWh 108.4 MWh 

Number of Days 145 days 32 days 177 days 
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Conclusions and Future Research 

Understanding the accuracy at which one can simulate fleet wide PV system energy production is a 

critical step towards facilitating increased PV penetration into California’s electricity system. Factors 

such as irradiance, shading, soiling, and system configuration greatly influence the performance of an 

installed PV system. Proper characterization of these factors is important to the simulation of PV system 

energy.   

Results demonstrated an accuracy of 6.2 percent rMAE when all systems and all days are included. The 

error was reduced to 4.5 percent rMAE for a subset of well-behaved PV systems. Results further 

improve to 5.4 and 3.5 percent rMAE, respectively, when partly cloudy day conditions are removed. 

These results demonstrate that accurate simulations of a large fleet of PV systems are obtainable. 

Improvement in the underlying PV simulation methodologies by further inspection of simulated and 

measured data at the hourly and sub-hourly level will improve accuracy. Additional work will also be 

done to understand better application of PV modeling derate factors. One aspect highlighted in this 

report is the common mischaracterization of PV system specifications (i.e., system layout, orientation, 

shading, etc.) that can lead to poor system performance simulations. Better data tuning and measured 

data cleaning methods would help identify and rectify faulty PV system specifications and help improve 

simulations. Finally, the incorporation of a weather-driven PV module soiling model might help improve 

the overall PV fleet simulations.  

A key next step of the work is to perform this analysis using forecasted rather than historical solar 

resource data. 
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Appendix A 

This appendix provides a hypothetical example of how to calculate rMAE. A short time period (one day) 

is selected in order to graphically illustrate the calculations; the actual calculations in this report use a 

six-month time period.  

As presented in , the process is follows: 

 Select time period: 1 day. 

 Select time interval: 1 hour. 

 Calculate absolute error for each hour and sum the result as described in the top part of 

Equation ( 1 ): 1.6 kWh/m2/day. 

 Calculate available energy for each hour from reference data and sum the result as described in 

the bottom part of Equation ( 1 ): 4.5 kWh/m2/day. 

 Calculate rMAE: 36% (i.e., 1.6/4.5). 

Figure 22. rMAE calculation example. 

 

It is important to note that a more often reported measurement of error is MAE relative to generating 

capacity. In the above example, however, it is unclear over what time period the generating capacity 

should be selected. Should it be capacity during daylight hours or capacity over the entire day, including 

night time hours? MAE relative to daytime capacity is about 13.3% (i.e., 1.6/12) while Mean Absolute 

Error relative to full day capacity is about 6.6% (i.e., 1.6/24). 

It is due to this sort of ambiguity, as well as the fact that rMAE is a much more stringent metric (e.g., in 

this example, rMAE is 6 times higher than MAE relative to daily generation capacity). 


