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 Demonstrate integrated PV and energy storage 

technology enabling cost effective load shifting, demand 

reduction and reduced needs for conventional ancillary 

services 

‒ Communication and control technology  

‒ Advanced lithium-ion (Li-ion) battery storage technology 

 Show these systems will reduce cost and carbon 

emissions and improve grid reliability and security 

 Identify market mechanisms that will be necessary to 

bring combined PV and storage to new markets 

‒ Identify an optimal finance product for storage 

‒ Evaluate requirements for and benefits of distributed storage at 

distribution and transmission scales 

Project Objectives 
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 SolarCity Topics: 
‒ Task 2 - Refine communication hardware and deploy prototype low-voltage grid 

interactive battery systems 
‒ Install lead-acid pilot systems 

‒ Internet-based storage control platform 

‒ Task 3 - Deploy integrated FirmPV / high-voltage storage systems 
‒ Install Li-ion pilot systems 

‒ Task 4 - Monetization of the Value of FirmPV  
‒ Marketing analysis of perceived customer benefits 

‒ Storage financing methods 

‒ Advances in the product since the grant 

 

 Tesla Topics: 
‒ Task 3 - Deploy integrated FirmPV / high-voltage storage systems 

‒ Stationary Li-ion battery integration 

 

 UC Berkeley Topics: 
‒ Task 4 - Monetization of the Value of FirmPV  

‒ PV variability analysis 

‒ Retail and distribution benefits analysis 

‒ Aggregate control methods 

‒ Balancing authority benefits 

Project Tasks 
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PV and Storage System Components 

Utility  

Net 

Meter 

Critical 

Site Loads 

Direction of 

Energy Flow 

Site Loads 

PV Modules 

PV Inverter 

AES Battery 

Inverter/Charger 
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 Three residential installations 

 Bay Area locations 

 PG&E territory 

Storage Pilots with Lead Acid Batteries 
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 Space Constraints  

‒ Wall and floor space are a premium 

‒ Floor mounted batteries in garages are a collision concern 

‒ Outdoor mounting locations and outdoor rated equipment is mandatory 

 Power Electronics 

‒ Native 120/240 VAC split-phase power electronics are required for backup 

power 

‒ Power electronics with partial 120 VAC support require significant 

additional balance-of-system for many sites 

 Electrical Code Compliance 

‒ All equipment must be UL Listed and NEC compliant 

Key Lessons Learned From Lead-acid Pilots 
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 Commercial pilots of lead-acid chemistry not deemed beneficial due 

to following characteristics 

‒ Limited Cycle Life – 600 to 800 lifetime cycles at 80% depth-of-discharge 

‒ Frequent Maintenance – Every 6 months to 1 year, depending on type 

(flooded versus sealed) 

‒ Low Throughput Efficiency – 25%+ efficiency loss at 2 hour or faster 

discharges 

‒ Voltage limitations – Individual cell maintenance requires low voltage (48 

V) systems.  Low voltage, high amperage systems are less efficient and 

higher cost 

‒ Limited Warranty – 1 to 5 years 

‒ Size – 60 – 75 Wh/L versus 250-730 Wh/L for Li-ion.  Significant bulk 

requires dedicated “battery rooms” at commercial scale. 

‒ Limited Packaging Options  - Lead-acid cells require external, third-party 

enclosures.  Outdoor rated options limited and extremely expensive. 

Lead-acid Pilots At Commercial Installations 
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Building a Storage Control System 

 

Internet 

SolarGuard 
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Battery 
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PV Inverter 

Site Gateway 
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Battery Module 
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Site Demand 

Solar Demand Reduction 

Battery  Demand Reduction 

Battery  Recharge 
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 Communication Standards - Significant need for communications 

standards development at all layers of communication 

‒ Battery <-> Inverter/Charger 

‒ Inverter <-> Site Gateway 

‒ Site Gateway <-> Central Server 

 Security - End-to-end, standards based security such as TLS/SSL is 

mandatory 

 Cellular backhauls - Cellular communications are reliable and 

approaching cost effectiveness for residential applications 

 Local, multi-layered intelligence – Central, server driven control 

best optimizes a fleet of systems, but most data processing and 

decision making  is best done locally.  Autonomous, predictable and 

stable operation is mandatory 

Storage Control System – Key Lessons 
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Key topics: 

 Development process 

 Summary of battery technology  

 The evolution of the battery packs 

 Power electronics 

 

Tesla Li-ion System Development 
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Summary of Battery Technology 

• Tesla uses automotive grade lithium-ion batteries, and 
stationary packs are designed/tested/validated to automotive 
standards 
– Produced in same factory and using same cells, modules as Tesla 

vehicle  

• 18650 cylindrical form factor 

• Cells – Module – Pack concept 

• Integrated Battery Management System (BMS) 

• Passive and active safety features 
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Development Process 

• Tesla adapted OEM automotive battery pack 
for residential use. This involved: 

– Electrical reconfiguration 

– Mechanical packaging development 

– Communication implementation 

– Thermal validation 

Proof of Concept Prototype Released Product 
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Proof of Concept 

• 18.5 kWh capacity proof of 
concept prototype built in the 
first 2 weeks of work on the 
grant program 
 

• Battery modules leveraged 
from low volume OEM product 

• Design work included: 
– Electrical design 

• DC voltage interconnection, 
from series to parallel 

– Safety architecture changes in 
hardware and firmware 

– Communication updates for 
integration with Solar City 
controller 

– Validation testing 

Initial Prototype in clear box 
(background), SMA inverter 

(foreground) 
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Field Prototypes 

• 4 systems built, 3 
installed 

• Same basic 
architecture as 
initial prototype, 
packaged robustly 
for field deployment 

 
Field installation at a residence 

Tesla Battery 
DC  

Disconnect 

Inverter 
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Field Prototypes 

• Specifications 
– 18.5 kWh capacity 
– 56.25 nominal voltage (45 – 63 V range) 
– 250 A peak DC current 
– 2’x4’x8”, 150kg 
– Compatible with SMA Sunny Island 5048 and Schneider/Xantrex 

XW6048 inverters for single or three phase connection 

• Field listed by TUV SUD America to UL508a and NFPA79 
 

Field installation at commercial site in Stockton, CA 
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Field Prototypes 

Wiring compartment (black 
polycarbonate shield, 

yellow and white interlock 
switch) 

• Design work included: 
– Wall mounting bracket with 

clevis 

– Outdoor rated (NEMA 4) 
enclosure selection and  interface 
with mount and batteries 

– Wiring compartment design 

– Additional safety features 
including, UL508 compliant 
interlock switch in door and 
shielding of all live parts 
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Lessons learned 

• A smaller capacity battery is a better target for residential 
applications 
– Size, weight, capacity 

• Leveraging a higher volume module architecture will 
improve costs 

• NEC compliant field wiring is expensive and takes up a lot of 
wall space 
– Integrate as much as possible into the unit 

• Desirable to plan wiring terminals/compartment with 
compatible inverters in mind 

• Battery and inverter controls need to be more closely 
coupled 

• Battery should expose a higher level interface to the user 
• UL listing needs to be considered from the initial planning 

stages 
• Installation details 
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Tesla GTB-X – 10kWhr Grid Tied Battery 

• Residential scale storage solution (10 
kWh) 

• New battery architecture leverages 
many high volume production 
benefits from Model-S 

• Custom designed enclosure (outdoor 
rated) and mounting system with 
integrated DC branch protection 

• Compliant with emerging standard UL 
1973 – Batteries for Stationary 
Applications 

• 2 units delivered as part of Grant in 
October 

• Initial production in Q2 2013 
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Power Electronics 

• Off the shelf, SMA Sunny Island and Xantrex 
XW  

• Communication not on par with state-of-art  

• Operational modes not designed for advanced 
li-ion 

 

Clear market need for better solutions 
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Evolution of Battery Packs 

• CSI program allowed for development of 
prototypes, which was platform for 
subsequent commercial and industrial units 

10kWh 
60kWh 400kWh 
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 Three commercial sites 

 Two California sites on retail 

locations, one in PJM territory 

 8 kW systems 

 Focused on peak-shaving 

 

 

Grant Funded Commercial Pilots 
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Li-ion Pilots – Commercial 
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Residential Li-ion Pilots in the Field 
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 Power Electronics – Native 3-phase, 480 VAC, UL 1741 listed 

inverter/chargers are needed to minimize design and balance-of-

system construction costs.  

 Permitting – Extensive plan checker and inspector education is 

needed. Clear fire and chemical safety documentation is required. 

 Physical Space – Even with high density Li-ion storage, indoor 

space in retail environments is extremely limited.  Weatherized power 

electronics are needed. 

Key Lessons from Li-ion Pilots 
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 Limitations of power electronics are key barrier to 

widespread deployment of storage 

‒ Battery inverter costs are 3x to 4x PV inverter costs 

‒ System integration between inverter, battery and 

PV is complicated and costly 

 

 

Opportunity for CSI RD&D funding to drive innovation 

 

 

Continuing Challenges of Power Electronics 
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Key Topics: 

 PV Variability Analysis 

 The opportunity for storage to fill the gap 

 Rate design for PV and storage 

 Maximizing value of storage and PV 

 

UCB Market Need and Tariff Design 
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Overview	  

•  Task	  4.2:	  Variability	  analysis	  
•  Task	  4.3:	  Distribu/on	  feeder	  impacts	  
•  Task	  4.4:	  Systemic	  benefits	  of	  storage	  
•  Task	  4.5:	  Evalua/on	  of	  system-‐level	  market	  
products	  
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Variability	  analysis:	  research	  ques/on	  

•  How	  large	  are	  distributed	  PV	  impacts	  on	  
California	  power	  system	  opera/ons?	  	  Factors	  
to	  consider:	  
– Spa/al	  distribu/on	  
– Total	  penetra/on	  (up	  to	  12	  GW)	  
– Time	  of	  year	  
– Specifics	  of	  power	  system	  dispatch	  process	  
– Loca/on	  of	  the	  mi/ga/on	  op/on	  (local	  balancing	  
versus	  “pooled”)	  

3	  



Variability	  analysis:	  Sites	  

Fresno	  (above),	  LA	  (below)	  

4	  

Operational impacts

Data set – Small spatial and temporal scales

0 3 61.5 km

Legend

With Consistent Data (Summer)

Selected Inverters, June 12 2012

All Inverters

0 4 82 km

Legend

With Consistent Data (Winter)

Selected Inverters, Jan. 2012

All Inverters

Instantaneous voltage and current from small
(< 15kW) installations, once per minute.

⇠50 systems in three 256 km2 areas
256 km2 ⇠ smallest spatial area for energy
markets.
Systems selected to give stratified sample of
distances between pairs of locations &
geographical random sampling.

Will use to create small spatial scale model

D. Callaway (UC Berkeley) Data and control in power systems Columbia, Dec 6 2013 7 / 35

Operational impacts

Data set – Small spatial and temporal scales

0 3 61.5 km

Legend

With Consistent Data (Summer)

Selected Inverters, June 12 2012

All Inverters

0 4 82 km

Legend

With Consistent Data (Winter)

Selected Inverters, Jan. 2012

All Inverters

Instantaneous voltage and current from small
(< 15kW) installations, once per minute.

⇠50 systems in three 256 km2 areas
256 km2 ⇠ smallest spatial area for energy
markets.
Systems selected to give stratified sample of
distances between pairs of locations &
geographical random sampling.

Will use to create small spatial scale model

D. Callaway (UC Berkeley) Data and control in power systems Columbia, Dec 6 2013 7 / 35



Variability	  analysis:	  single	  site	  example	  

Operational impacts

Volatility
Estimate Weather Regimes 
• Sunny 

•  Non-volatile 
•  (moving std) σm<1% 
•  Generation>70% 

• Cloudy 
•  σm<1% 
•  Generation<70% 

• Partly Cloudy 
•  Highly Volatile 
•  σm>3% 

• Transitional 
•  Moderately Volatile 
•  (1%  >  σm  <  3%) 

6/4/12 15 Geographic Diversity and Intermittency in Distribtued PV 

Hypothesis: Generation can
be described as a mixture of
models

It is easy to imagine that
cloud cover “regimes”
determine distributions

But we don’t directly
observe cloudiness

The figure shows eyeballed
categorization

But we’d like to estimate
regimes endogenously

D. Callaway (UC Berkeley) Data and control in power systems Columbia, Dec 6 2013 10 / 35
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Variability	  analysis:	  model	  
•  Model	  describes	  probability	  distribu/on	  of	  
dispatched	  frequency	  regula/on	  or	  load	  
following	  for	  each	  1-‐minute	  site	  in	  data	  set	  
– Model	  includes	  different	  dispatch	  requirements	  
for	  different	  weather	  condi/ons	  

– Captures	  spa/al	  autocorrela/on	  between	  sites	  
– Models	  requirements	  for	  PV	  in	  isola/on	  
– Very	  conserva/ve	  (accurate)	  forecast	  error	  model	  

•  Uses	  15-‐minute	  data	  as	  inputs	  to	  simulate	  
statewide	  requirements	  

6	  



Variability	  analysis:	  model	  valida/on	  
(load	  following)	  

7	  
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Figure 3: Plots of Correlation-Distance relationships of metrics in the two highest volatility states of each model.

M = 3
a ⌧

S# 1 2 3 1 2 3

1 0.48 0.15 0.02 0.25 0.95 1.59

2 - 0.24 0.11 - 1.66 1.15

3 - - 1.00 - - 0.74

M = 5
a ⌧

S# 1 2 3 4 5 1 2 3 4 5

1 0.48 0.28 0.07 0.03 0.02 0.20 0.61 1.13 1.14 2.43

2 - 0.21 0.14 0.08 0.04 - 1.24 2.04 1.33 0.62

3 - - 0.49 0.41 0.28 - - 1.91 1.82 0.76

4 - - - 0.83 0.57 - - - 1.09 0.79

5 - - - - 0.86 - - - - 0.72

M = 7
a ⌧

S# 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 0.41 0.42 0.15 0.06 0.03 0.02 0.02 0.18 0.23 1.02 1.14 1.51 2.77 1.34

2 - 0.56 0.26 0.09 0.04 0.04 0.02 - 0.30 0.94 1.45 1.05 0.44 1.73

3 - - 0.16 0.15 0.09 0.04 0.03 - - 1.59 2.06 1.40 0.66 0.76

4 - - - 0.51 0.42 0.29 0.28 - - - 1.92 1.83 0.75 0.94

5 - - - - 0.83 0.57 0.68 - - - - 1.10 0.79 0.87

6 - - - - - 0.86 0.74 - - - - - 0.72 0.69

7 - - - - - - 0.73 - - - - - - 0.79

Table 2: Correlogram fits for each pair of volatility states in each model. Model is of the form ⇢ij = a · exp(�dij/⌧)
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Figure 4: Maximums of the aggregate signal observed for each hour ending and the 95%confidence predicted by each model.

Plots are shown separately for model and test data. Three models are used, one where the latent volatility states are known

and two others where they are unknown. The neighborhood of the worst case correction is in the title of the plot.
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Variability	  analysis:	  opera/onal	  
impacts	  

8	  
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Variability	  analysis:	  requirements	  vs.	  
clear	  sky	  

9	  

Operational impacts

Hourly Results
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Distribu/on	  system	  impacts	  
(Task	  4.3)	  

Research	  ques/ons	  
•  How	  do	  physical	  
impacts	  of	  distributed	  
PV	  and	  storage	  vary	  
with	  PV	  penetra/on?	  
–  Substa/on	  capacity	  
–  Resis/ve	  losses	  
–  Transformers	  
–  Voltage	  regula/on	  

•  What	  are	  the	  economic	  
implica/ons,	  in	  the	  
context	  of	  load	  serving	  
en/ty	  costs?	  

Feeder R3-12.47-1 Scale: 1in = 200.0ft Created by Michael A. Cohen (macohen@berkeley.edu) using glm2dot.rb version 0.1 on Thu Feb 23 21:28:21 -0800 2012
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2

TABLE I
SUMMARY OF SIMULATED FEEDER CHARACTERISTICS AND FIGURE LEGEND

Name* Serves [6]

Nominal
Peak Load

(MW) [6]

Dist.
Trans-

formers

Avg
House

(kW) [7]

Approx
Length

(km)

Baseline Peak
Load (MW)

PV Profiles
Selected for Use

Berk. L.A. Sac. Berk. L.A. Sac.
R1-12.47-1 mod. suburban & rural 7.15 618 4.0 5.5 5.56 5.38 7.59 21 38 26
R1-12.47-2 mod. suburban & lt. rural 2.83 264 4.5 10.3 2.00 2.04 2.82 30 30 30
R1-12.47-3 moderate urban 1.35 22 8.0 1.9 1.27 1.25 1.60 10 10 8
R1-12.47-4 heavy suburban 5.30 50 4.0 2.3 4.31 4.09 5.65 12 17 12
R1-25.00-1 light rural 2.10 115 6.0 52.5 2.35 2.23 3.00 28 23 30
R3-12.47-1 heavy urban 8.40 472 12.0 4.0 6.64 6.30 8.70 20 31 25
R3-12.47-2 moderate urban 4.30 62 14.0 5.7 3.45 3.27 4.40 13 22 18
R3-12.47-3 heavy suburban 7.80 1,733 4.0† 10.4 7.54 7.00 9.67 56 48 55

* Climate region of origin is indicated by R1 (temperate west coast) or R3 (arid southwest). Nominal voltage is designated by 12.47 or 25.00 (kV).
† Changed from default of 7.0 kW due to an excess of streetlighting. See [6], [7] for the relationship between avg. house size and street lighting.
In figures, shape indicates Berkeley ( ), Los Angeles ( ) and Sacramento ( ) results. Black symbols with dashed lines show means for each location.

See Sections II-D to II-F for more on this data and feeder
placement. Note that the California peak demand during the
selected year was fairly typical relative to the past decade,
with a peak load of 46 846MW in 2012 versus a high of
50 270MW in 2006 [8]. This means that the simulations do
not include extreme conditions that may affect PV’s overall
value in important ways in the long run.

C. Feeder Loads and Power Factors
Because the taxonomy feeders specify only static planning

(i.e. peak) loads, PNNL provides a script to populate the
feeders with time-varying residential and commercial loads
[7]. The loading process is discussed in detail in [9]; we limit
the discussion here to a few points of relevance.

The PNNL method models end-use loads with “house”
objects that have a weather-dependent HVAC component and
schedules for other types of loads such as appliances. The
schedules for each house are scaled and time-shifted to provide
heterogeneity among loads. Commercial loads are modeled
as groups of “houses” with a different set of load schedules
corresponding to commercial activities. There are no industrial
or agricultural loads.

The PNNL script applies a different distribution of load
types depending on the climate region selected; e.g. air con-
ditioning is more common in region 3 than in region 1. In
this study, we applied region 3 loads to Los Angeles and
Sacramento simulations and used region 1 loads in Berkeley,
in keeping with the actual climate zone location of these cities.

Referring to the literature [9]–[11], we adjusted the script-
default load power factors as summarized in Table II. We
also reduced a capacitor bank on one feeder (R1-25.00-1)
from 150 kvar/phase to 50 kvar/phase after noticing that it was
overcompensating for reactive power, possibly because it is a
rural feeder and is meant to handle more pumping load.

D. PV Generation Data
The PV integrator SolarCity provided us with a database

of instantaneous power at each inverter they monitor (roughly
7,000 systems, mostly in California) under the terms of a non-
disclosure agreement. The vast majority of inverters provide

TABLE II
POWER FACTORS BY LOAD TYPE

HVAC Residential Commercial
Base HVAC 0.97 Water heater 1.0 Int. lights* 0.90
Fans 0.96 Pool pump* 0.87 Ext. lights* 0.95
Motor losses 0.125 Other res.* 0.95 Plug loads* 0.95

Street lights 1.0
* Power factor was changed from the PNNL default value of 1.0.

data on the quarter hour; some have one-minute data for
varying portions of our timeframe.

We performed data quality filtering to ensure we used
only complete and credible profiles in our models. We dis-
carded 448 individual anomalously high generation data points
(greater than 125% of the rated capacity of the installation).
We then dropped profiles that had more than 3.3% of data
missing between 8:00 and 16:00 or spurious non-zero night
time readings. Table III summarizes the initial pool of profiles
and the number passing our data quality checks for each
location.

To address remaining missing readings in the selected
profiles, we chose a very complete profile (with at least 365.8
days of non-zero readings between 8:00 and 16:00) from near
the center of each location. We used readings from these
“filler” profiles to fill gaps longer than one hour in other
profiles from that location, scaling the filler readings by the
ratio of the two profiles’ rated capacity. Any shorter gaps we
allowed to be handled internally by GridLAB-D, which uses
the last-seen generation value until the model clock reaches
the timestamp of the next reading.

E. Weather Data

We obtained one-minute temperature, humidity, and solar
irradiance data for Berkeley from Lawrence Berkeley National
Laboratoray [12] and for Los Angeles and Sacramento from
SOLRMAP at Loyola Marymount University and Sacramento
Municipal Utility District [13]. The Los Angeles and Sacra-
mento data, having been quality controlled at the source,
appeared to be quite complete and reliable and was used

12	  

In	  subsequent	  figures,	  shape	  indicates	  Berkeley	  (square),	  Los	  
Angeles	  (circle)	  and	  Sacramento	  (triangle)	  results	  	  
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Distribu/on	  impacts:	  Peak	  load	  
reduc/on	  
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Fig. 2. Effect of PV on peak loads.

squared; the more PV reduces power (and thus current) flow on
the lines, the less effect further reductions will have on losses.
For some feeders (mainly in Sacramento) losses increased
as penetration rose from 75% to 100%, presumably because
the losses associated with high “backflow” currents at certain
times began to exceed the losses “saved” at other times when
net current flow was lower.

Figure 1b shows that losses as a percentage of energy
consumed by loads from the grid (i.e. as a percentage of
utility wholesale power purchases) generally increase with
PV penetration. This is likely because most of the net load
reduction happens off-peak, when system losses are lower than
on-peak.

B. Peak Loading
We measured peak load as the maximum fifteen-minute

rolling average of one-minute measurements at the substation.
The extent to which PV reduces feeder peak load depends
largely on the timing of the peaks. Clearly, peak load reduction
will be greatest if peak load is coincident with peak PV
production. In California, however, load typically peaks later
in the day than PV production, and therefore peak loads are
reduced by only a fraction of the PV’s rating.

As shown in Figure 2, we observed that PV generally
reduced peak loads by much less than the penetration percent-
age. In contrast to system losses, location (i.e. climate) had a
strong effect on the peak load reduction impact of PV, with
Sacramento and Berkeley showing more significant reductions
than Los Angeles. Figure 2a shows the normalized peak load
as a function of PV penetration, whereas Figure 2b shows
the peak reduction as a percentage of the solar penetration.
Figure 2b illustrates that low penetrations of PV can be quite
effective at reducing peak loads, although this is not true
in all cases. Peak load reduction effectiveness diminishes as
penetration increases because early increments of PV tend
to reduce daytime peaks, causing the new peak to be in the
evening when PV contributes less power.

Figure 3 illustrates trends in the timing of peaks as PV pen-
etration increased. Without PV, peak loads arrived in August
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Fig. 3. Date and time of peak loads. The time reported is the first minute of
the peak fifteen-minute period.

2012 for most Sacramento feeders and half of the Los Angeles
feeders, while Berkeley feeders generally peaked in fall 2011
or June 2012. Peak times were widely dispersed between 14:22
and 17:18. However, a 7.5% penetration of PV was sufficient
to eliminate August peaks for all but one Los Angeles feeder,
shifting their peaks to the later afternoon during a relatively
warm spell in October 2011. Berkeley peaks, while initially
shifting towards the summer, were ultimately also moved to
the fall by high penetrations of PV. Meanwhile the Sacramento
peaks, driven by larger air conditioning loads, remained in
the summer at all levels of penetration, although moving
noticeably later in the afternoon. In all locations, peaks were
moved later in the day as PV reduced daytime usage.

When interpreting our peak load reduction results, it is im-
portant to consider how well the simulated feeder load shapes
align with feeder load shapes actually found in California.
We do not have access to a large enough corpus of load
shapes to do a rigorous analysis of this issue, but a high-
level comparison will suffice to contextualize our findings.
Figure 4 shows the average hourly load and PV generation
for each of our simulated feeders on August 13, 2012, which
was the day CAISO recorded its peak demand for 2012 [8].
It is also the peak demand day for five simulated Sacramento
feeders, though not for any Los Angeles or Berkeley feeders.
Each individual profile is normalized against the peak hour for
that profile. As in the other figures, the locational means are
straight averages of the eight normalized feeder simulations,
i.e. the feeders are not weighted by their size or expected
frequency of occurrence in the field. The load plot also shows
normalized CAISO system load (larger green circles) and
PG&E system load (larger blue circles).

From this figure we can see that the simulated peaks match
well with the PG&E and CAISO peaks in the 15:00-16:00
range. However, the simulated feeders universally drop in
demand more quickly than the system in the evening. This
has significant implications for peak load reduction. Note from
the bottom panel in Figure 4 that the last hour in which PV
can be expected to have a noticeable impact on load on this
day is 19:00. A feeder with a very high PV penetration might
therefore be expected to end up with a daily peak in the 20:00
hour. At this time, the simulated feeders are generally running
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Distribu/on	  impacts:	  voltage	  
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(a) Tap changes.
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(b) Mean current duty.

Fig. 5. Line voltage regulator activity across all three phases. See
Section III-D for discussion of broken lines.

of tap changes tends to decrease at R1-25.00-1, at least to a
penetration of 50%. This decrease could be due a reduction
in diurnal range of net load, and therefore the range of
voltage drops. Though further investigation is needed to fully
understand these results, they do indicate that in some cases
PV could reduce voltage regulator maintenance needs.

We examined two sensitivity scenarios to better understand
the impact that our PV data had on our regulator results.
The dotted lines in Figure 5 show regulator response when
we used the single PV profile with the most one-minute
data available (82% of days) at all PV sites rather than
using the usual geographic assignment. The dashed line shows
the same scenario with the one-minute data downsampled
to fifteen-minute resolution; this intermediate scenario helps
us to distinguish the effect of the one-minute data from the
effect of eliminating geographic diversity. We limited the
sensitivities to Los Angeles because this was our source of
one-minute data. Figure 5a suggests that geographic diversity
reduces tap change frequency (because the solid lines which
include geographic diversity fall well below their correspond-
ing single-profile dotted and dashed lines) and that fifteen-
minute PV data is a reasonable proxy for one-minute data
when studying regulator behavior (because the dashed lines
track their corresponding dotted lines closely). It is possible
that with PV data on even finer time scales (less than one
minute) a different pattern of regulator activity would emerge.
However, since regulators generally have a response lag on
the order of 30 s, very brief fluctuations in PV are likely to
result in voltage changes on the feeder rather than increased
regulator activity.

The effect of PV on regulator current duty was more
consistent than the effect on tap changes, as illustrated by
Figure 5b. With PV reducing the downstream load, current
through the regulator declines steadily as penetration increases.
This suggests that even in cases where PV increases a reg-
ulator’s activity, its expected lifetime may stay the same or
even increase because each tap change is less destructive under
lighter current duty. Our sensitivity runs suggest that neither
geographic diversity nor the use of one-minute resolution data
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Fig. 6. Voltage control and backflow. Many scenarios overlap near 0.0%.

has a substantial effect on regulator current duty.

E. Voltage Quality

We recorded voltage at all point-of-use meters at fifteen
minute intervals and tabulated in Figure 6a the proportion
of readings falling outside of the ANSI standard range of
0.95 pu–1.05 pu. In general, voltages appear to be well-
controlled, with most runs having less than 0.002% of readings
out of range, and the worst case (R3-12.47-3, Sac.) having
0.32% of readings out of range. This is consistent with prior
work suggesting that many feeders can support high penetra-
tions of PV without voltage violations [4]. Except at feeder
R1-25.00-1, almost all out-of-range voltages observed were
greater than 1.05 pu. As expected these high-side excursions
generally become more frequent as penetration increased and
the power injection from PV raised some voltages locally.
At R1-25.00-1 the out of range voltages were predominantly
less than 0.95 pu, with a small amount greater than 1.05 pu.
Under these conditions, increasing PV penetration improved
voltage quality on the feeder by boosting some local voltages
that would otherwise be low. As noted in Section III-D, it is
possible that more brief voltage excursions would be observed
with higher resolution PV generation data.

F. Reverse Power Flow

Figure 6b shows the incidence of negative real power flow
(“backflow”) through the substation, which can be a proxy for
protection issues and higher interconnection costs. At 50%
penetration, twelve of the 24 scenarios exhibited occasional
backflow, up to 1% of the time each. At 100% penetration,
all scenarios experienced backflow at least 4% of the time. In
general, backflow was more prevalent in Sacramento because
PV penetration in Sacramento was measured against a higher
peak air conditioning load. This led to a larger absolute
quantity of PV generation in Sacramento but with similar low
loads to Los Angeles and Berkeley on cooler days.
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(b) Mean current duty.

Fig. 5. Line voltage regulator activity across all three phases. See
Section III-D for discussion of broken lines.

of tap changes tends to decrease at R1-25.00-1, at least to a
penetration of 50%. This decrease could be due a reduction
in diurnal range of net load, and therefore the range of
voltage drops. Though further investigation is needed to fully
understand these results, they do indicate that in some cases
PV could reduce voltage regulator maintenance needs.

We examined two sensitivity scenarios to better understand
the impact that our PV data had on our regulator results.
The dotted lines in Figure 5 show regulator response when
we used the single PV profile with the most one-minute
data available (82% of days) at all PV sites rather than
using the usual geographic assignment. The dashed line shows
the same scenario with the one-minute data downsampled
to fifteen-minute resolution; this intermediate scenario helps
us to distinguish the effect of the one-minute data from the
effect of eliminating geographic diversity. We limited the
sensitivities to Los Angeles because this was our source of
one-minute data. Figure 5a suggests that geographic diversity
reduces tap change frequency (because the solid lines which
include geographic diversity fall well below their correspond-
ing single-profile dotted and dashed lines) and that fifteen-
minute PV data is a reasonable proxy for one-minute data
when studying regulator behavior (because the dashed lines
track their corresponding dotted lines closely). It is possible
that with PV data on even finer time scales (less than one
minute) a different pattern of regulator activity would emerge.
However, since regulators generally have a response lag on
the order of 30 s, very brief fluctuations in PV are likely to
result in voltage changes on the feeder rather than increased
regulator activity.

The effect of PV on regulator current duty was more
consistent than the effect on tap changes, as illustrated by
Figure 5b. With PV reducing the downstream load, current
through the regulator declines steadily as penetration increases.
This suggests that even in cases where PV increases a reg-
ulator’s activity, its expected lifetime may stay the same or
even increase because each tap change is less destructive under
lighter current duty. Our sensitivity runs suggest that neither
geographic diversity nor the use of one-minute resolution data
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Fig. 6. Voltage control and backflow. Many scenarios overlap near 0.0%.

has a substantial effect on regulator current duty.

E. Voltage Quality

We recorded voltage at all point-of-use meters at fifteen
minute intervals and tabulated in Figure 6a the proportion
of readings falling outside of the ANSI standard range of
0.95 pu–1.05 pu. In general, voltages appear to be well-
controlled, with most runs having less than 0.002% of readings
out of range, and the worst case (R3-12.47-3, Sac.) having
0.32% of readings out of range. This is consistent with prior
work suggesting that many feeders can support high penetra-
tions of PV without voltage violations [4]. Except at feeder
R1-25.00-1, almost all out-of-range voltages observed were
greater than 1.05 pu. As expected these high-side excursions
generally become more frequent as penetration increased and
the power injection from PV raised some voltages locally.
At R1-25.00-1 the out of range voltages were predominantly
less than 0.95 pu, with a small amount greater than 1.05 pu.
Under these conditions, increasing PV penetration improved
voltage quality on the feeder by boosting some local voltages
that would otherwise be low. As noted in Section III-D, it is
possible that more brief voltage excursions would be observed
with higher resolution PV generation data.

F. Reverse Power Flow

Figure 6b shows the incidence of negative real power flow
(“backflow”) through the substation, which can be a proxy for
protection issues and higher interconnection costs. At 50%
penetration, twelve of the 24 scenarios exhibited occasional
backflow, up to 1% of the time each. At 100% penetration,
all scenarios experienced backflow at least 4% of the time. In
general, backflow was more prevalent in Sacramento because
PV penetration in Sacramento was measured against a higher
peak air conditioning load. This led to a larger absolute
quantity of PV generation in Sacramento but with similar low
loads to Los Angeles and Berkeley on cooler days.
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Distribu/on	  impacts:	  economic	  model	  
•  Major	  cost	  considera/ons:	  
– Avoided	  wholesale	  purchases;	  includes	  reduc/on	  in	  
resis/ve	  losses	  

– Deferred	  capacity	  expansion;	  cost	  data	  taken	  from	  
PG&E	  workpapers	  submijed	  for	  last	  rate	  case	  

– All	  other	  costs	  deemed	  negligible	  based	  on	  simulated	  
engineering	  impacts	  

•  Major	  findings:	  
– Avoided	  energy	  purchases	  save	  3.5¢/kWh	  of	  PV	  
generated	  

–  Substa/on	  capacity	  upgrade	  deferral	  benefit	  of	  
0.2-‐0.7¢/kWh	  of	  PV	  generated	  

17	  



Systemic	  benefits	  of	  control	  (Task	  4.4)	  

Objec/ves	  
•  Develop	  storage	  control	  algorithms	  that	  can	  be	  
decentralized	  with	  low	  compu/ng	  requirements	  

•  Understand	  how	  the	  value	  of	  storage	  changes	  at	  
the	  transmission	  level	  
– As	  a	  func/on	  of	  the	  amount	  of	  energy	  capacity	  
available	  

–  Including	  energy	  shiking	  and	  ancillary	  services	  
•  Today	  will	  focus	  on	  value	  at	  transmission	  level	  
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Systemic	  benefits:	  model	  descrip/on	  
•  240	  bus	  reduced	  form	  model	  of	  WECC	  developed	  
by	  Jim	  Price	  at	  CAISO	  
– DC	  power	  flow	  

•  Mixed	  integer	  programming	  approach	  to	  	  
–  First	  locate	  storage	  op/mally	  
–  Then	  run	  unit	  commitment	  of	  generators	  and	  
economic	  dispatch	  of	  generators	  and	  energy	  storage	  
for	  one	  year	  of	  data	  

•  Storage	  can	  	  
–  shik	  energy	  (arbitrage)	  
–  provide	  2	  hour	  reserve	  (“load	  following”)	  
–  provide	  15	  minute	  reserve	  (“AGC”).	  
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Study	  scenarios	  focus	  on	  fuel	  price	  and	  
renewables	  penetra/on	  

•  20	  RPS	  vs.	  33%	  RPS	  in	  California	  (taken	  from	  
Price	  model)	  
– 20%	  scenario:	  6.5	  GW	  wind,	  0.5	  GW	  solar	  	  
– 33%	  scenario:	  24.7	  GW	  wind,	  7	  GW	  solar	  	  

•  2007	  fuel	  prices	  vs.	  2012	  fuel	  prices	  	  
– 2007:	  Gas:	  $7.09/MMBtu,	  Coal:	  $1.77/MMbtu	  
– 2012:	  Gas:	  $3.14/MMBtu,	  Coal:	  $2.22/MMBtu	  
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Systemic	  benefits:	  total	  opera/ng	  cost	  
impact	  

Figure 7: System cost savings as storage penetration is increased. System cost savings levels out in
each scenario, and by the time 20 GWh of additional storage are added, increasing the amount of
storage on the system no longer produces significant savings.

3 Results

3.1 System Benefits

The total system operating costs for each scenario drop with increasing penetration of storage. For
each scenario, total system cost savings are plotted in Figure 7. As one would expect, the largest
savings are occur in the high gas / high renewables scenario and the smallest savings are in the low
gas / low renewables scenario.

Using the total system costs for operating, we then calculate a marginal benefit for additional
storage at each increment of additional storage (i.e. the system cost savings due to the added increment
divided by the size of the increment). The changes are shown in Figure 8. These savings are originally
calculated over the simulation year (right y-axis), but we also report a “20 year” savings, computed
by assuming the same savings occur in each of 20 years, discounted to the present using a 7% discount
rate. Clearly the infrastructure, demand and fuel prices will not be static over a twenty year horizon.
But this metric gives us a sense of what the levelized benefit of the storage could be over a long
operating period and suggests what energy storage would need to cost – if all of these benefits could
be monetized and assigned to the storage investor.

At 0.5 GWh of storage, all scenarios have a marginal benefit greater than the $200/kWh – but this
price value is well above current storage installed costs. As storage penetration increases, the marginal
benefits of additional storage decrease to roughly below $100/kWh for every scenario by the time 10
GWh of storage capacity have been added to the system. By the time 20 GWh of additional storage
are added, incremental additions of storage result in negligible savings.

One might intuitively expect that the storage functions would always assigned to the highest value
services first, which would imply a monotonically decreasing marginal benefit curve. Though the
marginal benefit curve shows this general trend, it does have positive slope increments and even some
slightly negative values. This characteristics can be attributed to the fact that the quality of the
solution for each storage increment is variable.

26

21	  



Systemic	  benefits:	  marginal	  opera/ng	  
cost	  impact	  

Figure 8: Marginal benefit of additional storage

3.2 Implied Market Prices and Profits

To calculate the profits for the storage devices on the system, we first estimated the market clearing
prices for each market for each hour of the day. For the energy market, each generator or storage
device is paid the locational marginal price (LMP) for the node at which it is located. We obtain this
price from the dual of the nodal balance constraint, Eq. (14), which we will call �nt, where n 2 N and
t 2 T . Then, for each reserve market, including regulation up, regulation down, load following up, and
load following down, the market clearing price in each hour is the maximum opportunity cost ($/MW)
faced by a generator that is providing the corresponding resource in that hour. We will refer to these
hourly prices as �ru

t , �rd
t , �lfu

t , and �

lfd
t for regulation up, regulation down, load following up, and load

following down, respectively. Only generators constrained by their maximum capacities (for generators
providing up reserves) or minimum capacities (for generators providing down reserves) experience
opportunity costs. Generators that have not committed their full, currently available capacities are
indi↵erent to committing their capacities to one market versus another; they have available capacity
to do both. [63] We assume that all generators bid their opportunity costs into the reserve markets,
and that all storage devices in these markets act as price takers.

The gross profit, Zi, for a given storage device i over the entire year, then, is calculated as follows:

Zi =
X

t2T
�ite

dr
it � �ite

cr
it + �

ru
t e

ru
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t e

rd
it + �
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t e
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lfd
t e

lfd
it (12)

The total gross profit in the system, Z, is the sum of the Zi’s over all storage devices in the system.
Gross profit is calculated as the revenue received in the energy, regulation, and load following markets,
less the cost to charge storage using energy market prices.

Figure 9 shows the value of each component of Z, as additional storage devices are added to the
system. The total revenue available is largest in the high renewables, high gas price case, when the
reserve requirements are the largest due to the renewables, and the market clearing prices are set by
generators with higher marginal fuel costs. The value to storage operators is coming from reserves
more than arbitrage; in fact, as the total amount of storage on the system decreases, storage operators
lose money on arbitrage in favor of participating in the regulation and load following markets.

Figure 10 shows profit per unit of energy storage as the total amount of storage in the system
is increased. The total gross profit is largest in the high renewables, high gas price case, when the
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22	  NOTE:	  This	  does	  not	  include	  any	  poten/al	  capacity	  value	  



Conclusions	  
•  Distributed	  PV	  impact	  on	  AGC,	  LF	  impacts	  
poten/ally	  very	  small	  
– Local	  storage	  can	  balance,	  but	  capacity	  
requirements	  much	  greater	  than	  centralized	  

– Centralized	  PV	  loca/ons	  could	  have	  larger	  AGC,	  LF	  
impacts	  than	  previous	  es/mates	  

•  PV	  impact	  on	  distribu/on	  systems	  small;	  net	  
benefit	  on	  the	  order	  of	  4	  cents	  per	  kWh	  PV	  

•  Storage	  marginal	  value	  rapidly	  declines	  in	  
near-‐term	  systems	  

23	  
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Energy Storage Commercialization  

Beyond RD&D 
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Interconnection Challenges 

As of July 1, 2013, there were 667 active incentive applications in the SGIP queue for 

storage systems, totaling 33 MW of capacity. Of these, 319 applications, totaling 10 

MW of capacity, are for storage paired with RPS-eligible generating facilities, primarily 

rooftop solar PV [emphasis added]. While the incentives provided by SGIP have 

supported increased storage deployment, the majority of these paired storage and 

generation applications have stalled during the interconnection process due to 

the lack of clear policy guidance on their eligibility for the NEM tariff schedule, which 

describes the NEM billing credits, exemptions from various charges, and metering 

arrangements. 

Source: Assigned Commissioner's Ruling Regarding the Interconnection of Energy Storage Systems Paired with 

Renewable Generators Eligible for Net Energy Metering (ACR) in Rulemaking (R.) 12-11-005 
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 Expanded Pilot in California 

‒ 20-30 installations per week 

‒ 5 kW / 10 kWh Tesla Li-ion system 

‒ SGIP program funding 

Residential  

Deployments 
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 10-year guaranteed  

Demand Reduction service 

 Zero upfront cost 

 Available in California, Connecticut 

and Massachusetts 

 Tesla advanced Li-ion battery 

 Sales launched December 5th, 2013 

 

DemandLogic C&I 

Demand Management 
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CPUC Preferred Resources Pilot Proposal 
Replacing SONGS Capacity 
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Replacing SONGS Capacity 
Impact of Storage and Pre-cooling on Solar Profile 
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What Next for SolarCity and PV+Storage? 
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Forward-Looking Statements 

This presentation contains forward-looking statements that involve risks and uncertainties, 
including, but not limited to, statements regarding SolarCity’s customer and market growth 
opportunities, the future development, impact and benefits of energy storage technology, 
and assumptions relating to the foregoing. 
  
Forward-looking statements should not be read as a guarantee of future performance or 
results, and will not necessarily be accurate indications of the times at, or by, which such 
performance or results will be achieved, if at all. Forward-looking statements are subject to 
risks and uncertainties that could cause actual performance or results to differ materially 
from those expressed in or suggested by the forward-looking statements. You should read 
the section entitled “Risk Factors” in our registration statement on Form 10-Q, which has 
been filed with the Securities and Exchange Commission and identifies certain of these and 
additional risks and uncertainties. We do not undertake any obligation to publicly update or 
revise any forward-looking statement, whether as a result of new information, future 
developments or otherwise, except as otherwise required by law. 
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888.SOL.CITY | 888.765.2489 | SOLARCITY.COM 

This project is funded in part by a grant from California Solar Initiative Research, Development, 

Deployment and Demonstration Program.  The Program is administered by Itron, Inc. under the 

oversight of the California Public Utilities Commission. 

Project guidance provided by Pacific Gas and Electric Company.  


